MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab Structured version   Visualization version   GIF version

Theorem ralrab 3665
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralrab (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3659 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32imbi1i 349 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ ((𝑥𝐴𝜓) → 𝜒))
4 impexp 450 . . 3 (((𝑥𝐴𝜓) → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
53, 4bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
65ralbii2 3071 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449
This theorem is referenced by:  frminex  5617  wereu2  5635  frpomin  6313  weniso  7329  zmin  12903  prmreclem1  16887  lublecllem  18319  mgmhmeql  18643  mhmeql  18753  ghmeql  19171  pgpfac1lem5  20011  lmhmeql  20962  islindf4  21747  1stcfb  23332  fbssfi  23724  filssufilg  23798  txflf  23893  ptcmplem3  23941  symgtgp  23993  tgpconncompeqg  23999  cnllycmp  24855  ovolgelb  25381  dyadmax  25499  lhop1  25919  radcnvlt1  26327  noextenddif  27580  conway  27711  madebdaylemlrcut  27810  onscutlt  28165  onsiso  28169  bdayon  28173  bdayn0p1  28258  poimirlem4  37618  poimirlem32  37646  ismblfin  37655  igenval2  38060  glbconN  39370  glbconNOLD  39371  nadd2rabtr  43373  isubgruhgr  47868  intubeu  48972  unilbeu  48973
  Copyright terms: Public domain W3C validator