Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3603 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | imbi1i 354 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
4 | impexp 455 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
5 | 3, 4 | bitri 278 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
6 | 5 | ralbii2 3096 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∈ wcel 2112 ∀wral 3071 {crab 3075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rab 3080 df-v 3412 |
This theorem is referenced by: frminex 5502 wereu2 5519 weniso 7099 zmin 12374 prmreclem1 16297 lublecllem 17654 mhmeql 18046 ghmeql 18438 pgpfac1lem5 19259 lmhmeql 19885 islindf4 20593 1stcfb 22135 fbssfi 22527 filssufilg 22601 txflf 22696 ptcmplem3 22744 symgtgp 22796 tgpconncompeqg 22802 cnllycmp 23647 ovolgelb 24170 dyadmax 24288 lhop1 24703 radcnvlt1 25102 frpomin 33315 noextenddif 33426 conway 33546 madebdaylemlrcut 33626 poimirlem4 35331 poimirlem32 35359 ismblfin 35368 igenval2 35774 glbconN 36943 mgmhmeql 44780 |
Copyright terms: Public domain | W3C validator |