MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab Structured version   Visualization version   GIF version

Theorem ralrab 3623
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralrab (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3617 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32imbi1i 349 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ ((𝑥𝐴𝜓) → 𝜒))
4 impexp 450 . . 3 (((𝑥𝐴𝜓) → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
53, 4bitri 274 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
65ralbii2 3088 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424
This theorem is referenced by:  frminex  5560  wereu2  5577  frpomin  6228  weniso  7205  zmin  12613  prmreclem1  16545  lublecllem  17993  mhmeql  18379  ghmeql  18772  pgpfac1lem5  19597  lmhmeql  20232  islindf4  20955  1stcfb  22504  fbssfi  22896  filssufilg  22970  txflf  23065  ptcmplem3  23113  symgtgp  23165  tgpconncompeqg  23171  cnllycmp  24025  ovolgelb  24549  dyadmax  24667  lhop1  25083  radcnvlt1  25482  noextenddif  33798  conway  33920  madebdaylemlrcut  34006  poimirlem4  35708  poimirlem32  35736  ismblfin  35745  igenval2  36151  glbconN  37318  mgmhmeql  45245  intubeu  46158  unilbeu  46159
  Copyright terms: Public domain W3C validator