| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version | ||
| Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3676 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 6 | 5 | ralbii2 3079 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 |
| This theorem is referenced by: frminex 5638 wereu2 5656 frpomin 6334 weniso 7352 zmin 12965 prmreclem1 16941 lublecllem 18375 mgmhmeql 18699 mhmeql 18809 ghmeql 19227 pgpfac1lem5 20067 lmhmeql 21018 islindf4 21803 1stcfb 23388 fbssfi 23780 filssufilg 23854 txflf 23949 ptcmplem3 23997 symgtgp 24049 tgpconncompeqg 24055 cnllycmp 24911 ovolgelb 25438 dyadmax 25556 lhop1 25976 radcnvlt1 26384 noextenddif 27637 conway 27768 madebdaylemlrcut 27867 onscutlt 28222 onsiso 28226 bdayon 28230 bdayn0p1 28315 poimirlem4 37653 poimirlem32 37681 ismblfin 37690 igenval2 38095 glbconN 39400 glbconNOLD 39401 nadd2rabtr 43383 isubgruhgr 47861 intubeu 48938 unilbeu 48939 |
| Copyright terms: Public domain | W3C validator |