| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version | ||
| Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3691 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 6 | 5 | ralbii2 3088 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 {crab 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 |
| This theorem is referenced by: frminex 5663 wereu2 5681 frpomin 6360 weniso 7375 zmin 12987 prmreclem1 16955 lublecllem 18406 mgmhmeql 18730 mhmeql 18840 ghmeql 19258 pgpfac1lem5 20100 lmhmeql 21055 islindf4 21859 1stcfb 23454 fbssfi 23846 filssufilg 23920 txflf 24015 ptcmplem3 24063 symgtgp 24115 tgpconncompeqg 24121 cnllycmp 24989 ovolgelb 25516 dyadmax 25634 lhop1 26054 radcnvlt1 26462 noextenddif 27714 conway 27845 madebdaylemlrcut 27938 poimirlem4 37632 poimirlem32 37660 ismblfin 37669 igenval2 38074 glbconN 39379 glbconNOLD 39380 nadd2rabtr 43402 isubgruhgr 47859 intubeu 48888 unilbeu 48889 |
| Copyright terms: Public domain | W3C validator |