MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab Structured version   Visualization version   GIF version

Theorem ralrab 3648
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralrab (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3642 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32imbi1i 349 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ ((𝑥𝐴𝜓) → 𝜒))
4 impexp 450 . . 3 (((𝑥𝐴𝜓) → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
53, 4bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
65ralbii2 3074 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438
This theorem is referenced by:  frminex  5593  wereu2  5611  frpomin  6287  weniso  7288  zmin  12842  prmreclem1  16828  lublecllem  18264  mgmhmeql  18624  mhmeql  18734  ghmeql  19151  pgpfac1lem5  19993  lmhmeql  20989  islindf4  21775  1stcfb  23360  fbssfi  23752  filssufilg  23826  txflf  23921  ptcmplem3  23969  symgtgp  24021  tgpconncompeqg  24027  cnllycmp  24882  ovolgelb  25408  dyadmax  25526  lhop1  25946  radcnvlt1  26354  noextenddif  27607  conway  27740  madebdaylemlrcut  27844  onscutlt  28201  onsiso  28205  bdayon  28209  bdayn0p1  28294  poimirlem4  37674  poimirlem32  37702  ismblfin  37711  igenval2  38116  glbconN  39486  nadd2rabtr  43487  isubgruhgr  47978  intubeu  49094  unilbeu  49095
  Copyright terms: Public domain W3C validator