MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab Structured version   Visualization version   GIF version

Theorem ralrab 3682
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralrab (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3676 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32imbi1i 349 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ ((𝑥𝐴𝜓) → 𝜒))
4 impexp 450 . . 3 (((𝑥𝐴𝜓) → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
53, 4bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} → 𝜒) ↔ (𝑥𝐴 → (𝜓𝜒)))
65ralbii2 3079 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∀𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3052  {crab 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466
This theorem is referenced by:  frminex  5638  wereu2  5656  frpomin  6334  weniso  7352  zmin  12965  prmreclem1  16941  lublecllem  18375  mgmhmeql  18699  mhmeql  18809  ghmeql  19227  pgpfac1lem5  20067  lmhmeql  21018  islindf4  21803  1stcfb  23388  fbssfi  23780  filssufilg  23854  txflf  23949  ptcmplem3  23997  symgtgp  24049  tgpconncompeqg  24055  cnllycmp  24911  ovolgelb  25438  dyadmax  25556  lhop1  25976  radcnvlt1  26384  noextenddif  27637  conway  27768  madebdaylemlrcut  27867  onscutlt  28222  onsiso  28226  bdayon  28230  bdayn0p1  28315  poimirlem4  37653  poimirlem32  37681  ismblfin  37690  igenval2  38095  glbconN  39400  glbconNOLD  39401  nadd2rabtr  43383  isubgruhgr  47861  intubeu  48938  unilbeu  48939
  Copyright terms: Public domain W3C validator