| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version | ||
| Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3648 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
| 4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 6 | 5 | ralbii2 3071 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 |
| This theorem is referenced by: frminex 5598 wereu2 5616 frpomin 6288 weniso 7291 zmin 12845 prmreclem1 16828 lublecllem 18264 mgmhmeql 18590 mhmeql 18700 ghmeql 19118 pgpfac1lem5 19960 lmhmeql 20959 islindf4 21745 1stcfb 23330 fbssfi 23722 filssufilg 23796 txflf 23891 ptcmplem3 23939 symgtgp 23991 tgpconncompeqg 23997 cnllycmp 24853 ovolgelb 25379 dyadmax 25497 lhop1 25917 radcnvlt1 26325 noextenddif 27578 conway 27710 madebdaylemlrcut 27813 onscutlt 28170 onsiso 28174 bdayon 28178 bdayn0p1 28263 poimirlem4 37608 poimirlem32 37636 ismblfin 37645 igenval2 38050 glbconN 39360 nadd2rabtr 43361 isubgruhgr 47856 intubeu 48972 unilbeu 48973 |
| Copyright terms: Public domain | W3C validator |