![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3695 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
5 | 3, 4 | bitri 275 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
6 | 5 | ralbii2 3087 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 |
This theorem is referenced by: frminex 5668 wereu2 5686 frpomin 6363 weniso 7374 zmin 12984 prmreclem1 16950 lublecllem 18418 mgmhmeql 18742 mhmeql 18852 ghmeql 19270 pgpfac1lem5 20114 lmhmeql 21072 islindf4 21876 1stcfb 23469 fbssfi 23861 filssufilg 23935 txflf 24030 ptcmplem3 24078 symgtgp 24130 tgpconncompeqg 24136 cnllycmp 25002 ovolgelb 25529 dyadmax 25647 lhop1 26068 radcnvlt1 26476 noextenddif 27728 conway 27859 madebdaylemlrcut 27952 poimirlem4 37611 poimirlem32 37639 ismblfin 37648 igenval2 38053 glbconN 39359 glbconNOLD 39360 nadd2rabtr 43374 isubgruhgr 47792 intubeu 48773 unilbeu 48774 |
Copyright terms: Public domain | W3C validator |