Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3617 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
6 | 5 | ralbii2 3088 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 |
This theorem is referenced by: frminex 5560 wereu2 5577 frpomin 6228 weniso 7205 zmin 12613 prmreclem1 16545 lublecllem 17993 mhmeql 18379 ghmeql 18772 pgpfac1lem5 19597 lmhmeql 20232 islindf4 20955 1stcfb 22504 fbssfi 22896 filssufilg 22970 txflf 23065 ptcmplem3 23113 symgtgp 23165 tgpconncompeqg 23171 cnllycmp 24025 ovolgelb 24549 dyadmax 24667 lhop1 25083 radcnvlt1 25482 noextenddif 33798 conway 33920 madebdaylemlrcut 34006 poimirlem4 35708 poimirlem32 35736 ismblfin 35745 igenval2 36151 glbconN 37318 mgmhmeql 45245 intubeu 46158 unilbeu 46159 |
Copyright terms: Public domain | W3C validator |