Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralab | Structured version Visualization version GIF version |
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralab | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒)) | |
2 | df-clab 2716 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
3 | ralab.1 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbievw 2097 | . . . . . 6 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜓) |
5 | 2, 4 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
7 | biid 260 | . . . 4 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜒)) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
9 | 8 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ ∀𝑥(𝜓 → 𝜒)) |
10 | 1, 9 | bitri 274 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2068 ∈ wcel 2108 {cab 2715 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-ral 3068 |
This theorem is referenced by: rexab 3624 ralrnmpo 7390 funcnvuni 7752 kardex 9583 karden 9584 fimaxre3 11851 ptcnp 22681 ptrescn 22698 itg2leub 24804 nmoubi 29035 nmopub 30171 nmfnleub 30188 nmcexi 30289 mblfinlem3 35743 ismblfin 35745 itg2addnc 35758 hbtlem2 40865 |
Copyright terms: Public domain | W3C validator |