MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralab Structured version   Visualization version   GIF version

Theorem ralab 3648
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralab (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 3049 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 df-clab 2712 . . . . . 6 (𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
3 ralab.1 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
43sbievw 2098 . . . . . 6 ([𝑥 / 𝑦]𝜑𝜓)
52, 4bitri 275 . . . . 5 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
65imbi1i 349 . . . 4 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
7 biid 261 . . . 4 ((𝜓𝜒) ↔ (𝜓𝜒))
86, 7bitri 275 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
98albii 1820 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
101, 9bitri 275 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  [wsb 2067  wcel 2113  {cab 2711  wral 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-ral 3049
This theorem is referenced by:  rexab  3650  ralrnmpo  7494  funcnvuni  7871  kardex  9798  karden  9799  fimaxre3  12079  ptcnp  23557  ptrescn  23574  itg2leub  25682  addsuniflem  27964  addsbdaylem  27979  mulsuniflem  28108  nmoubi  30773  nmopub  31909  nmfnleub  31926  nmcexi  32027  mblfinlem3  37772  ismblfin  37774  itg2addnc  37787  hbtlem2  43281  oaun3lem1  43531
  Copyright terms: Public domain W3C validator