MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralab Structured version   Visualization version   GIF version

Theorem ralab 3667
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralab (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 3046 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 df-clab 2709 . . . . . 6 (𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
3 ralab.1 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
43sbievw 2094 . . . . . 6 ([𝑥 / 𝑦]𝜑𝜓)
52, 4bitri 275 . . . . 5 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
65imbi1i 349 . . . 4 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
7 biid 261 . . . 4 ((𝜓𝜒) ↔ (𝜓𝜒))
86, 7bitri 275 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
98albii 1819 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
101, 9bitri 275 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  [wsb 2065  wcel 2109  {cab 2708  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-ral 3046
This theorem is referenced by:  rexab  3669  ralrnmpo  7531  funcnvuni  7911  kardex  9854  karden  9855  fimaxre3  12136  ptcnp  23516  ptrescn  23533  itg2leub  25642  addsuniflem  27915  addsbdaylem  27930  mulsuniflem  28059  nmoubi  30708  nmopub  31844  nmfnleub  31861  nmcexi  31962  mblfinlem3  37660  ismblfin  37662  itg2addnc  37675  hbtlem2  43120  oaun3lem1  43370
  Copyright terms: Public domain W3C validator