| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralab | Structured version Visualization version GIF version | ||
| Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralab | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒)) | |
| 2 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
| 3 | ralab.1 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | sbievw 2094 | . . . . . 6 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜓) |
| 5 | 2, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
| 6 | 5 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
| 7 | biid 261 | . . . 4 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜒)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
| 9 | 8 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ ∀𝑥(𝜓 → 𝜒)) |
| 10 | 1, 9 | bitri 275 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 [wsb 2065 ∈ wcel 2109 {cab 2707 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-ral 3045 |
| This theorem is referenced by: rexab 3666 ralrnmpo 7528 funcnvuni 7908 kardex 9847 karden 9848 fimaxre3 12129 ptcnp 23509 ptrescn 23526 itg2leub 25635 addsuniflem 27908 addsbdaylem 27923 mulsuniflem 28052 nmoubi 30701 nmopub 31837 nmfnleub 31854 nmcexi 31955 mblfinlem3 37653 ismblfin 37655 itg2addnc 37668 hbtlem2 43113 oaun3lem1 43363 |
| Copyright terms: Public domain | W3C validator |