Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralab | Structured version Visualization version GIF version |
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralab | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒)) | |
2 | df-clab 2716 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
3 | ralab.1 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbievw 2095 | . . . . . 6 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜓) |
5 | 2, 4 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
6 | 5 | imbi1i 350 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
7 | biid 260 | . . . 4 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜒)) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
9 | 8 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ ∀𝑥(𝜓 → 𝜒)) |
10 | 1, 9 | bitri 274 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2067 ∈ wcel 2106 {cab 2715 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-ral 3069 |
This theorem is referenced by: rexab 3631 ralrnmpo 7412 funcnvuni 7778 kardex 9652 karden 9653 fimaxre3 11921 ptcnp 22773 ptrescn 22790 itg2leub 24899 nmoubi 29134 nmopub 30270 nmfnleub 30287 nmcexi 30388 mblfinlem3 35816 ismblfin 35818 itg2addnc 35831 hbtlem2 40949 |
Copyright terms: Public domain | W3C validator |