![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralab | Structured version Visualization version GIF version |
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by GG, 2-Nov-2024.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralab | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒)) | |
2 | df-clab 2718 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
3 | ralab.1 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbievw 2093 | . . . . . 6 ⊢ ([𝑥 / 𝑦]𝜑 ↔ 𝜓) |
5 | 2, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
7 | biid 261 | . . . 4 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜒)) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ (𝜓 → 𝜒)) |
9 | 8 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜒) ↔ ∀𝑥(𝜓 → 𝜒)) |
10 | 1, 9 | bitri 275 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 [wsb 2064 ∈ wcel 2108 {cab 2717 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-ral 3068 |
This theorem is referenced by: rexab 3716 ralrnmpo 7589 funcnvuni 7972 kardex 9963 karden 9964 fimaxre3 12241 ptcnp 23651 ptrescn 23668 itg2leub 25789 addsuniflem 28052 addsbdaylem 28067 mulsuniflem 28193 nmoubi 30804 nmopub 31940 nmfnleub 31957 nmcexi 32058 mblfinlem3 37619 ismblfin 37621 itg2addnc 37634 hbtlem2 43081 oaun3lem1 43336 |
Copyright terms: Public domain | W3C validator |