MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralab Structured version   Visualization version   GIF version

Theorem ralab 3688
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralab (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 3060 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 df-clab 2708 . . . . . 6 (𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
3 ralab.1 . . . . . . 7 (𝑦 = 𝑥 → (𝜑𝜓))
43sbievw 2093 . . . . . 6 ([𝑥 / 𝑦]𝜑𝜓)
52, 4bitri 274 . . . . 5 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
65imbi1i 348 . . . 4 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
7 biid 260 . . . 4 ((𝜓𝜒) ↔ (𝜓𝜒))
86, 7bitri 274 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
98albii 1819 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
101, 9bitri 274 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2065  wcel 2104  {cab 2707  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-sb 2066  df-clab 2708  df-ral 3060
This theorem is referenced by:  rexab  3691  ralrnmpo  7551  funcnvuni  7926  kardex  9893  karden  9894  fimaxre3  12166  ptcnp  23348  ptrescn  23365  itg2leub  25486  addsuniflem  27721  mulsuniflem  27841  nmoubi  30290  nmopub  31426  nmfnleub  31443  nmcexi  31544  mblfinlem3  36832  ismblfin  36834  itg2addnc  36847  hbtlem2  42170  oaun3lem1  42428
  Copyright terms: Public domain W3C validator