MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-3 Structured version   Visualization version   GIF version

Theorem ist1-3 23287
Description: A space is T1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥}))
Distinct variable groups:   𝑥,𝑜,𝐽   𝑜,𝑋,𝑥

Proof of Theorem ist1-3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ist1-2 23285 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
2 toponmax 22864 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3 eleq2 2823 . . . . . . . . 9 (𝑜 = 𝑋 → (𝑥𝑜𝑥𝑋))
43intminss 4950 . . . . . . . 8 ((𝑋𝐽𝑥𝑋) → {𝑜𝐽𝑥𝑜} ⊆ 𝑋)
52, 4sylan 580 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → {𝑜𝐽𝑥𝑜} ⊆ 𝑋)
65sselda 3958 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦 {𝑜𝐽𝑥𝑜}) → 𝑦𝑋)
7 biimt 360 . . . . . 6 (𝑦𝑋 → (𝑦 ∈ {𝑥} ↔ (𝑦𝑋𝑦 ∈ {𝑥})))
86, 7syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) ∧ 𝑦 {𝑜𝐽𝑥𝑜}) → (𝑦 ∈ {𝑥} ↔ (𝑦𝑋𝑦 ∈ {𝑥})))
98ralbidva 3161 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → (∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥})))
10 id 22 . . . . . . . . 9 (𝑥𝑜𝑥𝑜)
1110rgenw 3055 . . . . . . . 8 𝑜𝐽 (𝑥𝑜𝑥𝑜)
12 vex 3463 . . . . . . . . 9 𝑥 ∈ V
1312elintrab 4936 . . . . . . . 8 (𝑥 {𝑜𝐽𝑥𝑜} ↔ ∀𝑜𝐽 (𝑥𝑜𝑥𝑜))
1411, 13mpbir 231 . . . . . . 7 𝑥 {𝑜𝐽𝑥𝑜}
15 snssi 4784 . . . . . . 7 (𝑥 {𝑜𝐽𝑥𝑜} → {𝑥} ⊆ {𝑜𝐽𝑥𝑜})
1614, 15ax-mp 5 . . . . . 6 {𝑥} ⊆ {𝑜𝐽𝑥𝑜}
17 eqss 3974 . . . . . 6 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ( {𝑜𝐽𝑥𝑜} ⊆ {𝑥} ∧ {𝑥} ⊆ {𝑜𝐽𝑥𝑜}))
1816, 17mpbiran2 710 . . . . 5 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ {𝑜𝐽𝑥𝑜} ⊆ {𝑥})
19 dfss3 3947 . . . . 5 ( {𝑜𝐽𝑥𝑜} ⊆ {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥})
2018, 19bitri 275 . . . 4 ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑦 {𝑜𝐽𝑥𝑜}𝑦 ∈ {𝑥})
21 vex 3463 . . . . . . . 8 𝑦 ∈ V
2221elintrab 4936 . . . . . . 7 (𝑦 {𝑜𝐽𝑥𝑜} ↔ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
23 velsn 4617 . . . . . . . 8 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
24 equcom 2017 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
2523, 24bitri 275 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑥 = 𝑦)
2622, 25imbi12i 350 . . . . . 6 ((𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
2726ralbii 3082 . . . . 5 (∀𝑦𝑋 (𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
28 ralcom3 3086 . . . . 5 (∀𝑦𝑋 (𝑦 {𝑜𝐽𝑥𝑜} → 𝑦 ∈ {𝑥}) ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥}))
2927, 28bitr3i 277 . . . 4 (∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑦 {𝑜𝐽𝑥𝑜} (𝑦𝑋𝑦 ∈ {𝑥}))
309, 20, 293bitr4g 314 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝑋) → ( {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
3130ralbidva 3161 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥} ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
321, 31bitr4d 282 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋 {𝑜𝐽𝑥𝑜} = {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926  {csn 4601   cint 4922  cfv 6531  TopOnctopon 22848  Frect1 23245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-top 22832  df-topon 22849  df-cld 22957  df-t1 23252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator