Step | Hyp | Ref
| Expression |
1 | | simp1r 1200 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝐽 ∈ Reg) |
2 | | simp2l 1201 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑐 ∈ (Clsd‘𝐽)) |
3 | | simp2r 1202 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑥 ∈ 𝑋) |
4 | | simp1l 1199 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | toponuni 21811 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑋 = ∪ 𝐽) |
7 | 3, 6 | eleqtrd 2840 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑥 ∈ ∪ 𝐽) |
8 | | simp3 1140 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → ¬ 𝑥 ∈ 𝑐) |
9 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
10 | 9 | regsep2 22273 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ¬ 𝑥 ∈ 𝑐)) → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) |
11 | 1, 2, 7, 8, 10 | syl13anc 1374 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) |
12 | 11 | 3expia 1123 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋)) → (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
13 | 12 | ralrimivva 3112 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
14 | | topontop 21810 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
15 | 14 | adantr 484 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Top) |
16 | 5 | adantr 484 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
17 | 16 | difeq1d 4036 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) = (∪ 𝐽 ∖ 𝑦)) |
18 | 9 | opncld 21930 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
19 | 14, 18 | sylan 583 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
20 | 17, 19 | eqeltrd 2838 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
21 | | eleq2 2826 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (𝑥 ∈ 𝑐 ↔ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
22 | 21 | notbid 321 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (¬ 𝑥 ∈ 𝑐 ↔ ¬ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
23 | | eldif 3876 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋 ∖ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝑦)) |
24 | 23 | baibr 540 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
25 | 24 | con1bid 359 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ (𝑋 ∖ 𝑦) ↔ 𝑥 ∈ 𝑦)) |
26 | 22, 25 | sylan9bb 513 |
. . . . . . . . . 10
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (¬ 𝑥 ∈ 𝑐 ↔ 𝑥 ∈ 𝑦)) |
27 | | simpl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → 𝑐 = (𝑋 ∖ 𝑦)) |
28 | 27 | sseq1d 3932 |
. . . . . . . . . . . 12
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (𝑐 ⊆ 𝑜 ↔ (𝑋 ∖ 𝑦) ⊆ 𝑜)) |
29 | 28 | 3anbi1d 1442 |
. . . . . . . . . . 11
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → ((𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) ↔ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
30 | 29 | 2rexbidv 3219 |
. . . . . . . . . 10
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) ↔ ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
31 | 26, 30 | imbi12d 348 |
. . . . . . . . 9
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → ((¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
32 | 31 | ralbidva 3117 |
. . . . . . . 8
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
33 | 32 | rspcv 3532 |
. . . . . . 7
⊢ ((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
34 | 20, 33 | syl 17 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
35 | | ralcom3 3276 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
36 | | toponss 21824 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → 𝑦 ⊆ 𝑋) |
37 | 36 | sselda 3901 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑋) |
38 | | simprr2 1224 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑥 ∈ 𝑝) |
39 | 5 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑋 = ∪ 𝐽) |
40 | 39 | difeq1d 4036 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) = (∪ 𝐽 ∖ 𝑜)) |
41 | 14 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Top) |
42 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑜 ∈ 𝐽) |
43 | 9 | opncld 21930 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑜) ∈ (Clsd‘𝐽)) |
44 | 41, 42, 43 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (∪ 𝐽
∖ 𝑜) ∈
(Clsd‘𝐽)) |
45 | 40, 44 | eqeltrd 2838 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) ∈ (Clsd‘𝐽)) |
46 | | incom 4115 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∩ 𝑜) = (𝑜 ∩ 𝑝) |
47 | | simprr3 1225 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑜 ∩ 𝑝) = ∅) |
48 | 46, 47 | syl5eq 2790 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑝 ∩ 𝑜) = ∅) |
49 | | simplll 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ (TopOn‘𝑋)) |
50 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ∈ 𝐽) |
51 | | toponss 21824 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑝 ∈ 𝐽) → 𝑝 ⊆ 𝑋) |
52 | 49, 50, 51 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ⊆ 𝑋) |
53 | | reldisj 4366 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ⊆ 𝑋 → ((𝑝 ∩ 𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋 ∖ 𝑜))) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((𝑝 ∩ 𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋 ∖ 𝑜))) |
55 | 48, 54 | mpbid 235 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ⊆ (𝑋 ∖ 𝑜)) |
56 | 9 | clsss2 21969 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑜) ∈ (Clsd‘𝐽) ∧ 𝑝 ⊆ (𝑋 ∖ 𝑜)) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋 ∖ 𝑜)) |
57 | 45, 55, 56 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋 ∖ 𝑜)) |
58 | | simprr1 1223 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑦) ⊆ 𝑜) |
59 | | difcom 4400 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑦) |
60 | 58, 59 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) ⊆ 𝑦) |
61 | 57, 60 | sstrd 3911 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ 𝑦) |
62 | 38, 61 | jca 515 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)) |
63 | 62 | expr 460 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ (𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽)) → (((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
64 | 63 | anassrs 471 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ 𝑜 ∈ 𝐽) ∧ 𝑝 ∈ 𝐽) → (((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
65 | 64 | reximdva 3193 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ 𝑜 ∈ 𝐽) → (∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
66 | 65 | rexlimdva 3203 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → (∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
67 | 37, 66 | embantd 59 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
68 | 67 | ralimdva 3100 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑥 ∈ 𝑦 (𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
69 | 35, 68 | syl5bi 245 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
70 | 34, 69 | syld 47 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
71 | 70 | ralrimdva 3110 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
72 | 71 | imp 410 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)) |
73 | | isreg 22229 |
. . 3
⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
74 | 15, 72, 73 | sylanbrc 586 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Reg) |
75 | 13, 74 | impbida 801 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |