| Step | Hyp | Ref
| Expression |
| 1 | | simp1r 1199 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝐽 ∈ Reg) |
| 2 | | simp2l 1200 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑐 ∈ (Clsd‘𝐽)) |
| 3 | | simp2r 1201 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑥 ∈ 𝑋) |
| 4 | | simp1l 1198 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | | toponuni 22920 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑋 = ∪ 𝐽) |
| 7 | 3, 6 | eleqtrd 2843 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → 𝑥 ∈ ∪ 𝐽) |
| 8 | | simp3 1139 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → ¬ 𝑥 ∈ 𝑐) |
| 9 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 10 | 9 | regsep2 23384 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ ∪ 𝐽 ∧ ¬ 𝑥 ∈ 𝑐)) → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) |
| 11 | 1, 2, 7, 8, 10 | syl13anc 1374 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ 𝑐) → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) |
| 12 | 11 | 3expia 1122 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ 𝑋)) → (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
| 13 | 12 | ralrimivva 3202 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
| 14 | | topontop 22919 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 15 | 14 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Top) |
| 16 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 17 | 16 | difeq1d 4125 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) = (∪ 𝐽 ∖ 𝑦)) |
| 18 | 9 | opncld 23041 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 19 | 14, 18 | sylan 580 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 20 | 17, 19 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 21 | | eleq2 2830 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (𝑥 ∈ 𝑐 ↔ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
| 22 | 21 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (¬ 𝑥 ∈ 𝑐 ↔ ¬ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
| 23 | | eldif 3961 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑋 ∖ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝑦)) |
| 24 | 23 | baibr 536 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑋 ∖ 𝑦))) |
| 25 | 24 | con1bid 355 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (¬ 𝑥 ∈ (𝑋 ∖ 𝑦) ↔ 𝑥 ∈ 𝑦)) |
| 26 | 22, 25 | sylan9bb 509 |
. . . . . . . . . 10
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (¬ 𝑥 ∈ 𝑐 ↔ 𝑥 ∈ 𝑦)) |
| 27 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → 𝑐 = (𝑋 ∖ 𝑦)) |
| 28 | 27 | sseq1d 4015 |
. . . . . . . . . . . 12
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (𝑐 ⊆ 𝑜 ↔ (𝑋 ∖ 𝑦) ⊆ 𝑜)) |
| 29 | 28 | 3anbi1d 1442 |
. . . . . . . . . . 11
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → ((𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) ↔ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
| 30 | 29 | 2rexbidv 3222 |
. . . . . . . . . 10
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → (∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) ↔ ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
| 31 | 26, 30 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑐 = (𝑋 ∖ 𝑦) ∧ 𝑥 ∈ 𝑋) → ((¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
| 32 | 31 | ralbidva 3176 |
. . . . . . . 8
⊢ (𝑐 = (𝑋 ∖ 𝑦) → (∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
| 33 | 32 | rspcv 3618 |
. . . . . . 7
⊢ ((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
| 34 | 20, 33 | syl 17 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |
| 35 | | ralcom3 3097 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) |
| 36 | | toponss 22933 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → 𝑦 ⊆ 𝑋) |
| 37 | 36 | sselda 3983 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑋) |
| 38 | | simprr2 1223 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑥 ∈ 𝑝) |
| 39 | 5 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑋 = ∪ 𝐽) |
| 40 | 39 | difeq1d 4125 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) = (∪ 𝐽 ∖ 𝑜)) |
| 41 | 14 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Top) |
| 42 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑜 ∈ 𝐽) |
| 43 | 9 | opncld 23041 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑜) ∈ (Clsd‘𝐽)) |
| 44 | 41, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (∪ 𝐽
∖ 𝑜) ∈
(Clsd‘𝐽)) |
| 45 | 40, 44 | eqeltrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) ∈ (Clsd‘𝐽)) |
| 46 | | incom 4209 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∩ 𝑜) = (𝑜 ∩ 𝑝) |
| 47 | | simprr3 1224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑜 ∩ 𝑝) = ∅) |
| 48 | 46, 47 | eqtrid 2789 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑝 ∩ 𝑜) = ∅) |
| 49 | | simplll 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 50 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ∈ 𝐽) |
| 51 | | toponss 22933 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑝 ∈ 𝐽) → 𝑝 ⊆ 𝑋) |
| 52 | 49, 50, 51 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ⊆ 𝑋) |
| 53 | | reldisj 4453 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ⊆ 𝑋 → ((𝑝 ∩ 𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋 ∖ 𝑜))) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((𝑝 ∩ 𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋 ∖ 𝑜))) |
| 55 | 48, 54 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝑝 ⊆ (𝑋 ∖ 𝑜)) |
| 56 | 9 | clsss2 23080 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑜) ∈ (Clsd‘𝐽) ∧ 𝑝 ⊆ (𝑋 ∖ 𝑜)) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋 ∖ 𝑜)) |
| 57 | 45, 55, 56 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋 ∖ 𝑜)) |
| 58 | | simprr1 1222 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑦) ⊆ 𝑜) |
| 59 | | difcom 4489 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑦) |
| 60 | 58, 59 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑋 ∖ 𝑜) ⊆ 𝑦) |
| 61 | 57, 60 | sstrd 3994 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ 𝑦) |
| 62 | 38, 61 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ ((𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽) ∧ ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)) |
| 63 | 62 | expr 456 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ (𝑜 ∈ 𝐽 ∧ 𝑝 ∈ 𝐽)) → (((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 64 | 63 | anassrs 467 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ 𝑜 ∈ 𝐽) ∧ 𝑝 ∈ 𝐽) → (((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 65 | 64 | reximdva 3168 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) ∧ 𝑜 ∈ 𝐽) → (∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 66 | 65 | rexlimdva 3155 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → (∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 67 | 37, 66 | embantd 59 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 68 | 67 | ralimdva 3167 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑥 ∈ 𝑦 (𝑥 ∈ 𝑋 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 69 | 35, 68 | biimtrid 242 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑥 ∈ 𝑋 (𝑥 ∈ 𝑦 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 ((𝑋 ∖ 𝑦) ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 70 | 34, 69 | syld 47 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 71 | 70 | ralrimdva 3154 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)) → ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 72 | 71 | imp 406 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)) |
| 73 | | isreg 23340 |
. . 3
⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑥 ∈ 𝑦 ∃𝑝 ∈ 𝐽 (𝑥 ∈ 𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))) |
| 74 | 15, 72, 73 | sylanbrc 583 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅))) → 𝐽 ∈ Reg) |
| 75 | 13, 74 | impbida 801 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) |