MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg2 Structured version   Visualization version   GIF version

Theorem isreg2 23271
Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
Distinct variable groups:   𝑜,𝑐,𝑝,𝑥,𝐽   𝑋,𝑐,𝑜,𝑝,𝑥

Proof of Theorem isreg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1r 1199 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝐽 ∈ Reg)
2 simp2l 1200 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑐 ∈ (Clsd‘𝐽))
3 simp2r 1201 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑥𝑋)
4 simp1l 1198 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝐽 ∈ (TopOn‘𝑋))
5 toponuni 22808 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑋 = 𝐽)
73, 6eleqtrd 2831 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑥 𝐽)
8 simp3 1138 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → ¬ 𝑥𝑐)
9 eqid 2730 . . . . . 6 𝐽 = 𝐽
109regsep2 23270 . . . . 5 ((𝐽 ∈ Reg ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 𝐽 ∧ ¬ 𝑥𝑐)) → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))
111, 2, 7, 8, 10syl13anc 1374 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))
12113expia 1121 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋)) → (¬ 𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
1312ralrimivva 3181 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
14 topontop 22807 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1514adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Top)
165adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑋 = 𝐽)
1716difeq1d 4091 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (𝑋𝑦) = ( 𝐽𝑦))
189opncld 22927 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1914, 18sylan 580 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
2017, 19eqeltrd 2829 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
21 eleq2 2818 . . . . . . . . . . . 12 (𝑐 = (𝑋𝑦) → (𝑥𝑐𝑥 ∈ (𝑋𝑦)))
2221notbid 318 . . . . . . . . . . 11 (𝑐 = (𝑋𝑦) → (¬ 𝑥𝑐 ↔ ¬ 𝑥 ∈ (𝑋𝑦)))
23 eldif 3927 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑦) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑦))
2423baibr 536 . . . . . . . . . . . 12 (𝑥𝑋 → (¬ 𝑥𝑦𝑥 ∈ (𝑋𝑦)))
2524con1bid 355 . . . . . . . . . . 11 (𝑥𝑋 → (¬ 𝑥 ∈ (𝑋𝑦) ↔ 𝑥𝑦))
2622, 25sylan9bb 509 . . . . . . . . . 10 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (¬ 𝑥𝑐𝑥𝑦))
27 simpl 482 . . . . . . . . . . . . 13 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → 𝑐 = (𝑋𝑦))
2827sseq1d 3981 . . . . . . . . . . . 12 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (𝑐𝑜 ↔ (𝑋𝑦) ⊆ 𝑜))
29283anbi1d 1442 . . . . . . . . . . 11 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → ((𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) ↔ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
30292rexbidv 3203 . . . . . . . . . 10 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) ↔ ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
3126, 30imbi12d 344 . . . . . . . . 9 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → ((¬ 𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3231ralbidva 3155 . . . . . . . 8 (𝑐 = (𝑋𝑦) → (∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3332rspcv 3587 . . . . . . 7 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3420, 33syl 17 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
35 ralcom3 3080 . . . . . . 7 (∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ ∀𝑥𝑦 (𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
36 toponss 22821 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
3736sselda 3949 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → 𝑥𝑋)
38 simprr2 1223 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑥𝑝)
395ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑋 = 𝐽)
4039difeq1d 4091 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) = ( 𝐽𝑜))
4114ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Top)
42 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑜𝐽)
439opncld 22927 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ( 𝐽𝑜) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ( 𝐽𝑜) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) ∈ (Clsd‘𝐽))
46 incom 4175 . . . . . . . . . . . . . . . . . 18 (𝑝𝑜) = (𝑜𝑝)
47 simprr3 1224 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑜𝑝) = ∅)
4846, 47eqtrid 2777 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑝𝑜) = ∅)
49 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
50 simprlr 779 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝𝐽)
51 toponss 22821 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑝𝐽) → 𝑝𝑋)
5249, 50, 51syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝𝑋)
53 reldisj 4419 . . . . . . . . . . . . . . . . . 18 (𝑝𝑋 → ((𝑝𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋𝑜)))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((𝑝𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋𝑜)))
5548, 54mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝 ⊆ (𝑋𝑜))
569clsss2 22966 . . . . . . . . . . . . . . . 16 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝑝 ⊆ (𝑋𝑜)) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋𝑜))
5745, 55, 56syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋𝑜))
58 simprr1 1222 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑦) ⊆ 𝑜)
59 difcom 4455 . . . . . . . . . . . . . . . 16 ((𝑋𝑦) ⊆ 𝑜 ↔ (𝑋𝑜) ⊆ 𝑦)
6058, 59sylib 218 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) ⊆ 𝑦)
6157, 60sstrd 3960 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ 𝑦)
6238, 61jca 511 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))
6362expr 456 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ (𝑜𝐽𝑝𝐽)) → (((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6463anassrs 467 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ 𝑜𝐽) ∧ 𝑝𝐽) → (((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6564reximdva 3147 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ 𝑜𝐽) → (∃𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6665rexlimdva 3135 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → (∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6737, 66embantd 59 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → ((𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6867ralimdva 3146 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑥𝑦 (𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6935, 68biimtrid 242 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7034, 69syld 47 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7170ralrimdva 3134 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7271imp 406 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))
73 isreg 23226 . . 3 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7415, 72, 73sylanbrc 583 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Reg)
7513, 74impbida 800 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Topctop 22787  TopOnctopon 22804  Clsdccld 22910  clsccl 22912  Regcreg 23203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-topon 22805  df-cld 22913  df-cls 22915  df-reg 23210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator