MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss2 Structured version   Visualization version   GIF version

Theorem tgss2 22902
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐶,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem tgss2
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 = 𝐶)
2 uniexg 7673 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
32adantr 480 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 ∈ V)
41, 3eqeltrrd 2832 . . . 4 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
5 uniexb 7697 . . . 4 (𝐶 ∈ V ↔ 𝐶 ∈ V)
64, 5sylibr 234 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
7 tgss3 22901 . . 3 ((𝐵𝑉𝐶 ∈ V) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
86, 7syldan 591 . 2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
9 eltg2b 22874 . . . . . . 7 (𝐶 ∈ V → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
106, 9syl 17 . . . . . 6 ((𝐵𝑉 𝐵 = 𝐶) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
11 elunii 4861 . . . . . . . . 9 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
1211ancoms 458 . . . . . . . 8 ((𝑦𝐵𝑥𝑦) → 𝑥 𝐵)
13 biimt 360 . . . . . . . 8 (𝑥 𝐵 → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1412, 13syl 17 . . . . . . 7 ((𝑦𝐵𝑥𝑦) → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1514ralbidva 3153 . . . . . 6 (𝑦𝐵 → (∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1610, 15sylan9bb 509 . . . . 5 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
17 ralcom3 3082 . . . . 5 (∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
1816, 17bitrdi 287 . . . 4 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1918ralbidva 3153 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → (∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
20 dfss3 3918 . . 3 (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶))
21 ralcom 3260 . . 3 (∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
2219, 20, 213bitr4g 314 . 2 ((𝐵𝑉 𝐵 = 𝐶) → (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
238, 22bitrd 279 1 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897   cuni 4856  cfv 6481  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17347
This theorem is referenced by:  metss  24423  relowlssretop  37407  relowlpssretop  37408
  Copyright terms: Public domain W3C validator