MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleq Structured version   Visualization version   GIF version

Theorem raleleq 3350
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) (Proof shortened by Wolf Lammen, 18-Jul-2025.)
Assertion
Ref Expression
raleleq (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleq
StepHypRef Expression
1 ralel 3070 . 2 𝑥𝐵 𝑥𝐵
2 raleq 3331 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐵 𝑥𝐵))
31, 2mpbiri 258 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ral 3068  df-rex 3077
This theorem is referenced by:  uvtxnbgrb  29436
  Copyright terms: Public domain W3C validator