![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleleq | Structured version Visualization version GIF version |
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) (Proof shortened by Wolf Lammen, 18-Jul-2025.) |
Ref | Expression |
---|---|
raleleq | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel 3070 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 | |
2 | raleq 3331 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: uvtxnbgrb 29436 |
Copyright terms: Public domain | W3C validator |