MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleq Structured version   Visualization version   GIF version

Theorem raleleq 3335
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) Avoid ax-8 2106. (Revised by Wolf Lammen, 9-Mar-2025.)
Assertion
Ref Expression
raleleq (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleq
StepHypRef Expression
1 dfcleq 2723 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 biimp 214 . . . 4 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵))
32alimi 1811 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥(𝑥𝐴𝑥𝐵))
41, 3sylbi 216 . 2 (𝐴 = 𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
5 df-ral 3060 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
64, 5sylibr 233 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2104  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-cleq 2722  df-ral 3060
This theorem is referenced by:  uvtxnbgrb  28925
  Copyright terms: Public domain W3C validator