|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > raleleq | Structured version Visualization version GIF version | ||
| Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) (Proof shortened by Wolf Lammen, 18-Jul-2025.) | 
| Ref | Expression | 
|---|---|
| raleleq | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralel 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 | |
| 2 | raleq 3323 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: uvtxnbgrb 29418 | 
| Copyright terms: Public domain | W3C validator |