MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleq Structured version   Visualization version   GIF version

Theorem raleleq 3354
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.)
Assertion
Ref Expression
raleleq (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleq
StepHypRef Expression
1 eleq2 2828 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21biimpd 228 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
32ralrimiv 3108 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731  df-clel 2817  df-ral 3070
This theorem is referenced by:  uvtxnbgrb  27749
  Copyright terms: Public domain W3C validator