MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqOLD Structured version   Visualization version   GIF version

Theorem rexeqOLD 3337
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 30-Apr-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
rexeqOLD (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexeqOLD
StepHypRef Expression
1 biidd 262 . 2 (𝐴 = 𝐵 → (𝜑𝜑))
21rexeqbi1dv 3335 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-rex 3072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator