MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbii Structured version   Visualization version   GIF version

Theorem raleqbii 3162
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1 𝐴 = 𝐵
raleqbii.2 (𝜓𝜒)
Assertion
Ref Expression
raleqbii (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)

Proof of Theorem raleqbii
StepHypRef Expression
1 raleqbii.1 . . . 4 𝐴 = 𝐵
21eleq2i 2831 . . 3 (𝑥𝐴𝑥𝐵)
3 raleqbii.2 . . 3 (𝜓𝜒)
42, 3imbi12i 350 . 2 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54ralbii2 3090 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-cleq 2731  df-clel 2817  df-ral 3070
This theorem is referenced by:  fprlem1  8100  wfrlem5OLD  8128  frrlem15  9499  ply1coe  21448  ordtbaslem  22320  iscusp2  23435  isrgr  27907  elghomOLD  36024  iscrngo2  36134  tendoset  38752  comptiunov2i  41267
  Copyright terms: Public domain W3C validator