Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 | ⊢ 𝐴 = 𝐵 |
raleqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
raleqbii | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2829 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | raleqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | imbi12i 354 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)) |
5 | 4 | ralbii2 3086 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-clel 2816 df-ral 3066 |
This theorem is referenced by: fprlem1 8041 wfrlem5 8059 frrlem15 9373 ply1coe 21217 ordtbaslem 22085 iscusp2 23199 isrgr 27647 elghomOLD 35782 iscrngo2 35892 tendoset 38510 comptiunov2i 40991 |
Copyright terms: Public domain | W3C validator |