Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 | ⊢ 𝐴 = 𝐵 |
raleqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
raleqbii | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2828 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | raleqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | imbi12i 351 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)) |
5 | 4 | ralbii2 3088 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-clel 2814 df-ral 3062 |
This theorem is referenced by: fprlem1 8147 wfrlem5OLD 8175 frrlem15 9563 ply1coe 21516 ordtbaslem 22388 iscusp2 23503 isrgr 27975 elghomOLD 36093 iscrngo2 36203 tendoset 38973 comptiunov2i 41527 |
Copyright terms: Public domain | W3C validator |