![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
raleqbii.1 | ⊢ 𝐴 = 𝐵 |
raleqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
raleqbii | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2836 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | raleqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | imbi12i 350 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)) |
5 | 4 | ralbii2 3095 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: fprlem1 8341 wfrlem5OLD 8369 frrlem15 9826 opprdomnb 20739 ply1coe 22323 ordtbaslem 23217 iscusp2 24332 isrgr 29595 iineq12i 36161 elghomOLD 37847 iscrngo2 37957 tendoset 40716 comptiunov2i 43668 |
Copyright terms: Public domain | W3C validator |