MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbii Structured version   Visualization version   GIF version

Theorem raleqbii 3156
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1 𝐴 = 𝐵
raleqbii.2 (𝜓𝜒)
Assertion
Ref Expression
raleqbii (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)

Proof of Theorem raleqbii
StepHypRef Expression
1 raleqbii.1 . . . 4 𝐴 = 𝐵
21eleq2i 2829 . . 3 (𝑥𝐴𝑥𝐵)
3 raleqbii.2 . . 3 (𝜓𝜒)
42, 3imbi12i 354 . 2 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54ralbii2 3086 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2110  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-cleq 2729  df-clel 2816  df-ral 3066
This theorem is referenced by:  fprlem1  8041  wfrlem5  8059  frrlem15  9373  ply1coe  21217  ordtbaslem  22085  iscusp2  23199  isrgr  27647  elghomOLD  35782  iscrngo2  35892  tendoset  38510  comptiunov2i  40991
  Copyright terms: Public domain W3C validator