| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbii | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| raleqbii.1 | ⊢ 𝐴 = 𝐵 |
| raleqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| raleqbii | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2823 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | raleqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | imbi12i 350 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒)) |
| 5 | 4 | ralbii2 3074 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: fprlem1 8225 frrlem15 9645 opprdomnb 20627 ply1coe 22208 ordtbaslem 23098 iscusp2 24211 isrgr 29533 iineq12i 36231 elghomOLD 37927 iscrngo2 38037 tendoset 40798 comptiunov2i 43739 |
| Copyright terms: Public domain | W3C validator |