MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrb Structured version   Visualization version   GIF version

Theorem uvtxnbgrb 27671
Description: A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrb (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))

Proof of Theorem uvtxnbgrb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 27670 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
3 simpl 482 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁𝑉)
4 raleleq 3347 . . . . . 6 ((𝑉 ∖ {𝑁}) = (𝐺 NeighbVtx 𝑁) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
54eqcoms 2746 . . . . 5 ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
65adantl 481 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
71uvtxel 27658 . . . 4 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
83, 6, 7sylanbrc 582 . . 3 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁 ∈ (UnivVtx‘𝐺))
98ex 412 . 2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → 𝑁 ∈ (UnivVtx‘𝐺)))
102, 9impbid2 225 1 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  Vtxcvtx 27269   NeighbVtx cnbgr 27602  UnivVtxcuvtx 27655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-nbgr 27603  df-uvtx 27656
This theorem is referenced by:  nbusgrvtxm1uvtx  27675  uvtxupgrres  27678  nbcplgr  27704
  Copyright terms: Public domain W3C validator