MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrb Structured version   Visualization version   GIF version

Theorem uvtxnbgrb 28647
Description: A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrb (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))

Proof of Theorem uvtxnbgrb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 28646 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
3 simpl 483 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁𝑉)
4 raleleq 3337 . . . . . 6 ((𝑉 ∖ {𝑁}) = (𝐺 NeighbVtx 𝑁) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
54eqcoms 2740 . . . . 5 ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
65adantl 482 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
71uvtxel 28634 . . . 4 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
83, 6, 7sylanbrc 583 . . 3 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁 ∈ (UnivVtx‘𝐺))
98ex 413 . 2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → 𝑁 ∈ (UnivVtx‘𝐺)))
102, 9impbid2 225 1 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  cdif 3944  {csn 4627  cfv 6540  (class class class)co 7405  Vtxcvtx 28245   NeighbVtx cnbgr 28578  UnivVtxcuvtx 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-nbgr 28579  df-uvtx 28632
This theorem is referenced by:  nbusgrvtxm1uvtx  28651  uvtxupgrres  28654  nbcplgr  28680
  Copyright terms: Public domain W3C validator