MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrb Structured version   Visualization version   GIF version

Theorem uvtxnbgrb 29258
Description: A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrb (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))

Proof of Theorem uvtxnbgrb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 29257 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
3 simpl 481 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁𝑉)
4 raleleq 3327 . . . . . 6 ((𝑉 ∖ {𝑁}) = (𝐺 NeighbVtx 𝑁) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
54eqcoms 2733 . . . . 5 ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
65adantl 480 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
71uvtxel 29245 . . . 4 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
83, 6, 7sylanbrc 581 . . 3 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁 ∈ (UnivVtx‘𝐺))
98ex 411 . 2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → 𝑁 ∈ (UnivVtx‘𝐺)))
102, 9impbid2 225 1 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  cdif 3936  {csn 4624  cfv 6543  (class class class)co 7416  Vtxcvtx 28853   NeighbVtx cnbgr 29189  UnivVtxcuvtx 29242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-nbgr 29190  df-uvtx 29243
This theorem is referenced by:  nbusgrvtxm1uvtx  29262  uvtxupgrres  29265  nbcplgr  29291
  Copyright terms: Public domain W3C validator