MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgrb Structured version   Visualization version   GIF version

Theorem uvtxnbgrb 29335
Description: A vertex is universal iff all the other vertices are its neighbors. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.) (Proof shortened by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgrb (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))

Proof of Theorem uvtxnbgrb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxnbgr.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxnbgr 29334 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
3 simpl 482 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁𝑉)
4 raleleq 3317 . . . . . 6 ((𝑉 ∖ {𝑁}) = (𝐺 NeighbVtx 𝑁) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
54eqcoms 2738 . . . . 5 ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
65adantl 481 . . . 4 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁))
71uvtxel 29322 . . . 4 (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑁})𝑛 ∈ (𝐺 NeighbVtx 𝑁)))
83, 6, 7sylanbrc 583 . . 3 ((𝑁𝑉 ∧ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) → 𝑁 ∈ (UnivVtx‘𝐺))
98ex 412 . 2 (𝑁𝑉 → ((𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}) → 𝑁 ∈ (UnivVtx‘𝐺)))
102, 9impbid2 226 1 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  Vtxcvtx 28930   NeighbVtx cnbgr 29266  UnivVtxcuvtx 29319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-nbgr 29267  df-uvtx 29320
This theorem is referenced by:  nbusgrvtxm1uvtx  29339  uvtxupgrres  29342  nbcplgr  29368
  Copyright terms: Public domain W3C validator