| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleleqOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of raleleq 3325 as of 18-Jul-2025. (Contributed by AV, 30-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| raleleqOLD | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 | |
| 2 | id 22 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 3 | 2 | raleqdv 3309 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵)) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |