MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleqOLD Structured version   Visualization version   GIF version

Theorem raleleqOLD 3334
Description: Obsolete version of raleleq 3331 as of 9-Mar-2025. (Contributed by AV, 30-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
raleleqOLD (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleqOLD
StepHypRef Expression
1 eleq2 2816 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21biimpd 228 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
32ralrimiv 3139 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-cleq 2718  df-clel 2804  df-ral 3056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator