MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleqOLD Structured version   Visualization version   GIF version

Theorem raleleqOLD 3310
Description: Obsolete version of raleleq 3309 as of 18-Jul-2025. (Contributed by AV, 30-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
raleleqOLD (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleqOLD
StepHypRef Expression
1 ralel 3051 . 2 𝑥𝐵 𝑥𝐵
2 id 22 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
32raleqdv 3293 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐵 𝑥𝐵))
41, 3mpbiri 258 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ral 3049  df-rex 3058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator