![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2820 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 345 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3174 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-ral 3063 |
This theorem is referenced by: rspc2vd 3945 frd 5636 f12dfv 7271 f13dfv 7272 knatar 7354 ofrfvalg 7678 fmpox 8053 ovmptss 8079 frrlem4 8274 on2ind 8668 on3ind 8669 marypha1lem 9428 supeq123d 9445 oieq1 9507 acneq 10038 isfin1a 10287 fpwwe2cbv 10625 fpwwe2lem2 10627 fpwwecbv 10639 fpwwelem 10640 eltskg 10745 elgrug 10787 cau3lem 15301 rlim 15439 ello1 15459 elo1 15470 caurcvg2 15624 caucvgb 15626 fsum2dlem 15716 fsumcom2 15720 fprod2dlem 15924 fprodcom2 15928 pcfac 16832 vdwpc 16913 rami 16948 prmgaplem7 16990 prdsval 17401 ismre 17534 isacs2 17597 acsfiel 17598 iscat 17616 iscatd 17617 catidex 17618 catideu 17619 cidfval 17620 cidval 17621 catlid 17627 catrid 17628 comfeq 17650 catpropd 17653 monfval 17679 issubc 17785 fullsubc 17800 isfunc 17814 funcpropd 17851 isfull 17861 isfth 17865 fthpropd 17872 natfval 17897 initoval 17943 termoval 17944 isposd 18276 lubfval 18303 glbfval 18316 ismgm 18562 issstrmgm 18572 grpidval 18580 gsumvalx 18595 gsumpropd 18597 gsumress 18601 issgrp 18611 sgrppropd 18622 ismnddef 18627 ismndd 18647 mndpropd 18650 ismhm 18673 resmhm 18701 isgrp 18825 grppropd 18837 isgrpd2e 18841 isnsg 19035 nmznsg 19048 isghm 19092 isga 19155 subgga 19164 gsmsymgrfix 19296 gsmsymgreq 19300 gexval 19446 ispgp 19460 isslw 19476 sylow2blem2 19489 efgval 19585 efgi 19587 efgsdm 19598 cmnpropd 19659 iscmnd 19662 submcmn2 19707 gsumzaddlem 19789 dmdprd 19868 dprdcntz 19878 issrg 20011 isring 20060 ringpropd 20102 isirred 20233 islring 20310 sdrgacs 20417 abvfval 20426 abvpropd 20450 islmod 20475 islmodd 20477 lmodprop2d 20534 lssset 20544 islmhm 20638 reslmhm 20663 lmhmpropd 20684 islbs 20687 rrgval 20903 isdomn 20910 psgndiflemA 21154 isphl 21181 islindf 21367 islindf2 21369 lsslindf 21385 isassa 21411 isassad 21419 assapropd 21426 ltbval 21598 opsrval 21601 dmatval 21994 dmatcrng 22004 scmatcrng 22023 cpmat 22211 istopg 22397 restbas 22662 ordtrest2 22708 cnfval 22737 cnpfval 22738 ist0 22824 ist1 22825 ishaus 22826 iscnrm 22827 isnrm 22839 ist0-2 22848 ishaus2 22855 nrmsep3 22859 iscmp 22892 is1stc 22945 isptfin 23020 islocfin 23021 kgenval 23039 kgencn2 23061 txbas 23071 ptval 23074 dfac14 23122 isfil 23351 isufil 23407 isufl 23417 flfcntr 23547 ucnval 23782 iscusp 23804 prdsxmslem2 24038 tngngp3 24173 isnlm 24192 nmofval 24231 lebnumii 24482 iscau4 24796 iscmet 24801 iscmet3lem1 24808 iscmet3 24810 equivcmet 24834 ulmcaulem 25906 ulmcau 25907 fsumdvdscom 26689 dchrisumlem3 26994 pntibndlem2 27094 pntibnd 27096 pntlemp 27113 ostth2lem2 27137 madebdayim 27382 no2indslem 27438 no3inds 27442 istrkgc 27705 istrkgb 27706 istrkge 27708 trgcgrg 27766 tgcgr4 27782 isismt 27785 nbgr2vtx1edg 28607 nbuhgr2vtx1edgb 28609 uvtxval 28644 uvtxel 28645 uvtxel1 28653 uvtxusgrel 28660 cusgredg 28681 cplgr3v 28692 cplgrop 28694 usgredgsscusgredg 28716 isrgr 28816 isewlk 28859 iswlk 28867 iswwlks 29090 wlkiswwlks2 29129 isclwwlk 29237 clwlkclwwlklem1 29252 isconngr 29442 isconngr1 29443 isfrgr 29513 frgr1v 29524 nfrgr2v 29525 frgr3v 29528 1vwmgr 29529 3vfriswmgr 29531 3cyclfrgrrn1 29538 n4cyclfrgr 29544 isplig 29729 gidval 29765 vciOLD 29814 isvclem 29830 isnvlem 29863 lnoval 30005 ajfval 30062 isphg 30070 minvecolem3 30129 htth 30171 ressprs 32133 mntoval 32152 mgcoval 32156 isslmd 32347 resv1r 32456 prmidlval 32555 mxidlval 32577 isufd 32632 rprmval 32633 iscref 32824 ordtrest2NEW 32903 fmcncfil 32911 issiga 33110 isrnsiga 33111 isldsys 33154 ismeas 33197 carsgval 33302 issibf 33332 sitgfval 33340 signstfvneq0 33583 istrkg2d 33678 ispconn 34214 issconn 34217 txpconn 34223 cvxpconn 34233 cvmscbv 34249 iscvm 34250 cvmsdisj 34261 cvmsss2 34265 snmlval 34322 elmrsubrn 34511 ismfs 34540 mclsval 34554 fwddifnval 35135 bj-ismoore 35986 pibp19 36295 pibp21 36296 poimirlem28 36516 cover2g 36584 seqpo 36615 incsequz2 36617 caushft 36629 ismtyval 36668 isass 36714 isexid 36715 elghomlem1OLD 36753 isrngo 36765 isrngod 36766 isgrpda 36823 rngohomval 36832 iscom2 36863 idlval 36881 pridlval 36901 maxidlval 36907 elrefrels3 37389 elcnvrefrels3 37405 eleqvrels3 37463 lflset 37929 islfld 37932 isopos 38050 isoml 38108 isatl 38169 iscvlat 38193 ishlat1 38222 psubspset 38615 lautset 38953 pautsetN 38969 ldilfset 38979 ltrnfset 38988 dilfsetN 39023 trnfsetN 39026 trnsetN 39027 trlfset 39031 tendofset 39629 tendoset 39630 dihffval 40101 lpolsetN 40353 hdmapfval 40698 hgmapfval 40757 aomclem8 41803 islnm 41819 clsk1independent 42797 gneispace2 42883 gneispaceel2 42895 gneispacess2 42897 caucvgbf 44200 ioodvbdlimc1lem1 44647 ioodvbdlimc1lem2 44648 ioodvbdlimc2lem 44650 issal 45030 ismea 45167 isome 45210 iccpartiltu 46090 iccelpart 46101 isomgr 46491 isupwlk 46514 mgmpropd 46545 ismgmd 46546 ismgmhm 46553 resmgmhm 46568 iscllaw 46599 iscomlaw 46600 isasslaw 46602 isrng 46650 rngpropd 46673 c0snmgmhm 46713 zlidlring 46826 uzlidlring 46827 dmatALTval 47081 islininds 47127 lindslinindsimp2 47144 ldepsnlinc 47189 elbigo 47237 iscnrm3r 47581 isprsd 47588 lubeldm2d 47591 glbeldm2d 47592 isthincd2lem2 47656 isthincd 47657 |
Copyright terms: Public domain | W3C validator |