Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 345 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3116 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-ral 3069 |
This theorem is referenced by: rspc2vd 3884 frd 5545 f12dfv 7139 f13dfv 7140 knatar 7222 ofrfvalg 7533 fmpox 7898 ovmptss 7922 frrlem4 8094 marypha1lem 9181 supeq123d 9198 oieq1 9260 acneq 9788 isfin1a 10037 fpwwe2cbv 10375 fpwwe2lem2 10377 fpwwecbv 10389 fpwwelem 10390 eltskg 10495 elgrug 10537 cau3lem 15055 rlim 15193 ello1 15213 elo1 15224 caurcvg2 15378 caucvgb 15380 fsum2dlem 15471 fsumcom2 15475 fprod2dlem 15679 fprodcom2 15683 pcfac 16589 vdwpc 16670 rami 16705 prmgaplem7 16747 prdsval 17155 ismre 17288 isacs2 17351 acsfiel 17352 iscat 17370 iscatd 17371 catidex 17372 catideu 17373 cidfval 17374 cidval 17375 catlid 17381 catrid 17382 comfeq 17404 catpropd 17407 monfval 17433 issubc 17539 fullsubc 17554 isfunc 17568 funcpropd 17605 isfull 17615 isfth 17619 fthpropd 17626 natfval 17651 initoval 17697 termoval 17698 isposd 18030 lubfval 18057 glbfval 18070 ismgm 18316 issstrmgm 18326 grpidval 18334 gsumvalx 18349 gsumpropd 18351 gsumress 18355 issgrp 18365 ismnddef 18376 ismndd 18396 mndpropd 18399 ismhm 18421 resmhm 18448 isgrp 18572 grppropd 18583 isgrpd2e 18587 isnsg 18772 nmznsg 18785 isghm 18823 isga 18886 subgga 18895 gsmsymgrfix 19025 gsmsymgreq 19029 gexval 19172 ispgp 19186 isslw 19202 sylow2blem2 19215 efgval 19312 efgi 19314 efgsdm 19325 cmnpropd 19385 iscmnd 19388 submcmn2 19429 gsumzaddlem 19511 dmdprd 19590 dprdcntz 19600 issrg 19732 isring 19776 ringpropd 19810 isirred 19930 sdrgacs 20058 abvfval 20067 abvpropd 20091 islmod 20116 islmodd 20118 lmodprop2d 20174 lssset 20184 islmhm 20278 reslmhm 20303 lmhmpropd 20324 islbs 20327 rrgval 20547 isdomn 20554 psgndiflemA 20795 isphl 20822 islindf 21008 islindf2 21010 lsslindf 21026 isassa 21052 isassad 21060 assapropd 21065 ltbval 21233 opsrval 21236 dmatval 21630 dmatcrng 21640 scmatcrng 21659 cpmat 21847 istopg 22033 restbas 22298 ordtrest2 22344 cnfval 22373 cnpfval 22374 ist0 22460 ist1 22461 ishaus 22462 iscnrm 22463 isnrm 22475 ist0-2 22484 ishaus2 22491 nrmsep3 22495 iscmp 22528 is1stc 22581 isptfin 22656 islocfin 22657 kgenval 22675 kgencn2 22697 txbas 22707 ptval 22710 dfac14 22758 isfil 22987 isufil 23043 isufl 23053 flfcntr 23183 ucnval 23418 iscusp 23440 prdsxmslem2 23674 tngngp3 23809 isnlm 23828 nmofval 23867 lebnumii 24118 iscau4 24432 iscmet 24437 iscmet3lem1 24444 iscmet3 24446 equivcmet 24470 ulmcaulem 25542 ulmcau 25543 fsumdvdscom 26323 dchrisumlem3 26628 pntibndlem2 26728 pntibnd 26730 pntlemp 26747 ostth2lem2 26771 trgcgrg 26865 tgcgr4 26881 isismt 26884 nbgr2vtx1edg 27706 nbuhgr2vtx1edgb 27708 uvtxval 27743 uvtxel 27744 uvtxel1 27752 uvtxusgrel 27759 cusgredg 27780 cplgr3v 27791 cplgrop 27793 usgredgsscusgredg 27815 isrgr 27915 isewlk 27958 iswlk 27966 iswwlks 28188 wlkiswwlks2 28227 isclwwlk 28335 clwlkclwwlklem1 28350 isconngr 28540 isconngr1 28541 isfrgr 28611 frgr1v 28622 nfrgr2v 28623 frgr3v 28626 1vwmgr 28627 3vfriswmgr 28629 3cyclfrgrrn1 28636 n4cyclfrgr 28642 isplig 28825 gidval 28861 vciOLD 28910 isvclem 28926 isnvlem 28959 lnoval 29101 ajfval 29158 isphg 29166 minvecolem3 29225 htth 29267 ressprs 31228 mntoval 31247 mgcoval 31251 isslmd 31442 resv1r 31528 prmidlval 31599 mxidlval 31620 isufd 31650 rprmval 31651 iscref 31781 ordtrest2NEW 31860 fmcncfil 31868 issiga 32067 isrnsiga 32068 isldsys 32111 ismeas 32154 carsgval 32257 issibf 32287 sitgfval 32295 signstfvneq0 32538 istrkg2d 32633 ispconn 33172 issconn 33175 txpconn 33181 cvxpconn 33191 cvmscbv 33207 iscvm 33208 cvmsdisj 33219 cvmsss2 33223 snmlval 33280 elmrsubrn 33469 ismfs 33498 mclsval 33512 on2ind 33815 on3ind 33816 madebdayim 34057 no2indslem 34098 no3inds 34102 fwddifnval 34452 bj-ismoore 35263 pibp19 35572 pibp21 35573 poimirlem28 35792 cover2g 35860 seqpo 35892 incsequz2 35894 caushft 35906 ismtyval 35945 isass 35991 isexid 35992 elghomlem1OLD 36030 isrngo 36042 isrngod 36043 isgrpda 36100 rngohomval 36109 iscom2 36140 idlval 36158 pridlval 36178 maxidlval 36184 elrefrels3 36623 elcnvrefrels3 36636 eleqvrels3 36693 lflset 37060 islfld 37063 isopos 37181 isoml 37239 isatl 37300 iscvlat 37324 ishlat1 37353 psubspset 37745 lautset 38083 pautsetN 38099 ldilfset 38109 ltrnfset 38118 dilfsetN 38153 trnfsetN 38156 trnsetN 38157 trlfset 38161 tendofset 38759 tendoset 38760 dihffval 39231 lpolsetN 39483 hdmapfval 39828 hgmapfval 39887 aomclem8 40873 islnm 40889 clsk1independent 41616 gneispace2 41702 gneispaceel2 41714 gneispacess2 41716 ioodvbdlimc1lem1 43432 ioodvbdlimc1lem2 43433 ioodvbdlimc2lem 43435 issal 43815 ismea 43949 isome 43992 iccpartiltu 44831 iccelpart 44842 isomgr 45232 isupwlk 45255 mgmpropd 45286 ismgmd 45287 ismgmhm 45294 resmgmhm 45309 iscllaw 45340 iscomlaw 45341 isasslaw 45343 isrng 45391 c0snmgmhm 45429 zlidlring 45443 uzlidlring 45444 dmatALTval 45698 islininds 45744 lindslinindsimp2 45761 ldepsnlinc 45806 elbigo 45854 iscnrm3r 46199 isprsd 46206 lubeldm2d 46209 glbeldm2d 46210 isthincd2lem2 46274 isthincd 46275 |
Copyright terms: Public domain | W3C validator |