![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3173 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-ral 3062 |
This theorem is referenced by: rspc2vd 3943 frd 5634 f12dfv 7267 f13dfv 7268 knatar 7350 ofrfvalg 7674 fmpox 8049 ovmptss 8075 frrlem4 8270 on2ind 8664 on3ind 8665 marypha1lem 9424 supeq123d 9441 oieq1 9503 acneq 10034 isfin1a 10283 fpwwe2cbv 10621 fpwwe2lem2 10623 fpwwecbv 10635 fpwwelem 10636 eltskg 10741 elgrug 10783 cau3lem 15297 rlim 15435 ello1 15455 elo1 15466 caurcvg2 15620 caucvgb 15622 fsum2dlem 15712 fsumcom2 15716 fprod2dlem 15920 fprodcom2 15924 pcfac 16828 vdwpc 16909 rami 16944 prmgaplem7 16986 prdsval 17397 ismre 17530 isacs2 17593 acsfiel 17594 iscat 17612 iscatd 17613 catidex 17614 catideu 17615 cidfval 17616 cidval 17617 catlid 17623 catrid 17624 comfeq 17646 catpropd 17649 monfval 17675 issubc 17781 fullsubc 17796 isfunc 17810 funcpropd 17847 isfull 17857 isfth 17861 fthpropd 17868 natfval 17893 initoval 17939 termoval 17940 isposd 18272 lubfval 18299 glbfval 18312 ismgm 18558 issstrmgm 18568 grpidval 18576 gsumvalx 18591 gsumpropd 18593 gsumress 18597 issgrp 18607 sgrppropd 18618 ismnddef 18623 ismndd 18643 mndpropd 18646 ismhm 18669 resmhm 18697 isgrp 18821 grppropd 18833 isgrpd2e 18837 isnsg 19029 nmznsg 19042 isghm 19086 isga 19149 subgga 19158 gsmsymgrfix 19290 gsmsymgreq 19294 gexval 19440 ispgp 19454 isslw 19470 sylow2blem2 19483 efgval 19579 efgi 19581 efgsdm 19592 cmnpropd 19653 iscmnd 19656 submcmn2 19701 gsumzaddlem 19783 dmdprd 19862 dprdcntz 19872 issrg 20004 isring 20053 ringpropd 20095 isirred 20225 islring 20302 sdrgacs 20409 abvfval 20418 abvpropd 20442 islmod 20467 islmodd 20469 lmodprop2d 20526 lssset 20536 islmhm 20630 reslmhm 20655 lmhmpropd 20676 islbs 20679 rrgval 20895 isdomn 20902 psgndiflemA 21145 isphl 21172 islindf 21358 islindf2 21360 lsslindf 21376 isassa 21402 isassad 21410 assapropd 21417 ltbval 21589 opsrval 21592 dmatval 21985 dmatcrng 21995 scmatcrng 22014 cpmat 22202 istopg 22388 restbas 22653 ordtrest2 22699 cnfval 22728 cnpfval 22729 ist0 22815 ist1 22816 ishaus 22817 iscnrm 22818 isnrm 22830 ist0-2 22839 ishaus2 22846 nrmsep3 22850 iscmp 22883 is1stc 22936 isptfin 23011 islocfin 23012 kgenval 23030 kgencn2 23052 txbas 23062 ptval 23065 dfac14 23113 isfil 23342 isufil 23398 isufl 23408 flfcntr 23538 ucnval 23773 iscusp 23795 prdsxmslem2 24029 tngngp3 24164 isnlm 24183 nmofval 24222 lebnumii 24473 iscau4 24787 iscmet 24792 iscmet3lem1 24799 iscmet3 24801 equivcmet 24825 ulmcaulem 25897 ulmcau 25898 fsumdvdscom 26678 dchrisumlem3 26983 pntibndlem2 27083 pntibnd 27085 pntlemp 27102 ostth2lem2 27126 madebdayim 27371 no2indslem 27427 no3inds 27431 istrkgc 27694 istrkgb 27695 istrkge 27697 trgcgrg 27755 tgcgr4 27771 isismt 27774 nbgr2vtx1edg 28596 nbuhgr2vtx1edgb 28598 uvtxval 28633 uvtxel 28634 uvtxel1 28642 uvtxusgrel 28649 cusgredg 28670 cplgr3v 28681 cplgrop 28683 usgredgsscusgredg 28705 isrgr 28805 isewlk 28848 iswlk 28856 iswwlks 29079 wlkiswwlks2 29118 isclwwlk 29226 clwlkclwwlklem1 29241 isconngr 29431 isconngr1 29432 isfrgr 29502 frgr1v 29513 nfrgr2v 29514 frgr3v 29517 1vwmgr 29518 3vfriswmgr 29520 3cyclfrgrrn1 29527 n4cyclfrgr 29533 isplig 29716 gidval 29752 vciOLD 29801 isvclem 29817 isnvlem 29850 lnoval 29992 ajfval 30049 isphg 30057 minvecolem3 30116 htth 30158 ressprs 32120 mntoval 32139 mgcoval 32143 isslmd 32334 resv1r 32444 prmidlval 32543 mxidlval 32565 isufd 32620 rprmval 32621 iscref 32812 ordtrest2NEW 32891 fmcncfil 32899 issiga 33098 isrnsiga 33099 isldsys 33142 ismeas 33185 carsgval 33290 issibf 33320 sitgfval 33328 signstfvneq0 33571 istrkg2d 33666 ispconn 34202 issconn 34205 txpconn 34211 cvxpconn 34221 cvmscbv 34237 iscvm 34238 cvmsdisj 34249 cvmsss2 34253 snmlval 34310 elmrsubrn 34499 ismfs 34528 mclsval 34542 fwddifnval 35123 bj-ismoore 35974 pibp19 36283 pibp21 36284 poimirlem28 36504 cover2g 36572 seqpo 36603 incsequz2 36605 caushft 36617 ismtyval 36656 isass 36702 isexid 36703 elghomlem1OLD 36741 isrngo 36753 isrngod 36754 isgrpda 36811 rngohomval 36820 iscom2 36851 idlval 36869 pridlval 36889 maxidlval 36895 elrefrels3 37377 elcnvrefrels3 37393 eleqvrels3 37451 lflset 37917 islfld 37920 isopos 38038 isoml 38096 isatl 38157 iscvlat 38181 ishlat1 38210 psubspset 38603 lautset 38941 pautsetN 38957 ldilfset 38967 ltrnfset 38976 dilfsetN 39011 trnfsetN 39014 trnsetN 39015 trlfset 39019 tendofset 39617 tendoset 39618 dihffval 40089 lpolsetN 40341 hdmapfval 40686 hgmapfval 40745 aomclem8 41788 islnm 41804 clsk1independent 42782 gneispace2 42868 gneispaceel2 42880 gneispacess2 42882 caucvgbf 44186 ioodvbdlimc1lem1 44633 ioodvbdlimc1lem2 44634 ioodvbdlimc2lem 44636 issal 45016 ismea 45153 isome 45196 iccpartiltu 46076 iccelpart 46087 isomgr 46477 isupwlk 46500 mgmpropd 46531 ismgmd 46532 ismgmhm 46539 resmgmhm 46554 iscllaw 46585 iscomlaw 46586 isasslaw 46588 isrng 46636 rngpropd 46659 c0snmgmhm 46698 zlidlring 46779 uzlidlring 46780 dmatALTval 47034 islininds 47080 lindslinindsimp2 47097 ldepsnlinc 47142 elbigo 47190 iscnrm3r 47534 isprsd 47541 lubeldm2d 47544 glbeldm2d 47545 isthincd2lem2 47609 isthincd 47610 |
Copyright terms: Public domain | W3C validator |