![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3173 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-ral 3062 |
This theorem is referenced by: rspc2vd 3944 frd 5635 f12dfv 7273 f13dfv 7274 knatar 7356 ofrfvalg 7680 fmpox 8055 ovmptss 8081 frrlem4 8276 on2ind 8670 on3ind 8671 marypha1lem 9430 supeq123d 9447 oieq1 9509 acneq 10040 isfin1a 10289 fpwwe2cbv 10627 fpwwe2lem2 10629 fpwwecbv 10641 fpwwelem 10642 eltskg 10747 elgrug 10789 cau3lem 15303 rlim 15441 ello1 15461 elo1 15472 caurcvg2 15626 caucvgb 15628 fsum2dlem 15718 fsumcom2 15722 fprod2dlem 15926 fprodcom2 15930 pcfac 16834 vdwpc 16915 rami 16950 prmgaplem7 16992 prdsval 17403 ismre 17536 isacs2 17599 acsfiel 17600 iscat 17618 iscatd 17619 catidex 17620 catideu 17621 cidfval 17622 cidval 17623 catlid 17629 catrid 17630 comfeq 17652 catpropd 17655 monfval 17681 issubc 17787 fullsubc 17802 isfunc 17816 funcpropd 17853 isfull 17863 isfth 17867 fthpropd 17874 natfval 17899 initoval 17945 termoval 17946 isposd 18278 lubfval 18305 glbfval 18318 ismgm 18564 issstrmgm 18574 grpidval 18582 gsumvalx 18597 gsumpropd 18599 gsumress 18603 issgrp 18613 sgrppropd 18624 ismnddef 18629 ismndd 18649 mndpropd 18652 ismhm 18675 resmhm 18703 isgrp 18827 grppropd 18839 isgrpd2e 18843 isnsg 19037 nmznsg 19050 isghm 19094 isga 19157 subgga 19166 gsmsymgrfix 19298 gsmsymgreq 19302 gexval 19448 ispgp 19462 isslw 19478 sylow2blem2 19491 efgval 19587 efgi 19589 efgsdm 19600 cmnpropd 19661 iscmnd 19664 submcmn2 19709 gsumzaddlem 19791 dmdprd 19870 dprdcntz 19880 issrg 20013 isring 20062 ringpropd 20104 isirred 20237 islring 20314 sdrgacs 20421 abvfval 20430 abvpropd 20454 islmod 20479 islmodd 20481 lmodprop2d 20539 lssset 20549 islmhm 20643 reslmhm 20668 lmhmpropd 20689 islbs 20692 rrgval 20909 isdomn 20916 psgndiflemA 21160 isphl 21187 islindf 21373 islindf2 21375 lsslindf 21391 isassa 21417 isassad 21425 assapropd 21432 ltbval 21604 opsrval 21607 dmatval 22001 dmatcrng 22011 scmatcrng 22030 cpmat 22218 istopg 22404 restbas 22669 ordtrest2 22715 cnfval 22744 cnpfval 22745 ist0 22831 ist1 22832 ishaus 22833 iscnrm 22834 isnrm 22846 ist0-2 22855 ishaus2 22862 nrmsep3 22866 iscmp 22899 is1stc 22952 isptfin 23027 islocfin 23028 kgenval 23046 kgencn2 23068 txbas 23078 ptval 23081 dfac14 23129 isfil 23358 isufil 23414 isufl 23424 flfcntr 23554 ucnval 23789 iscusp 23811 prdsxmslem2 24045 tngngp3 24180 isnlm 24199 nmofval 24238 lebnumii 24489 iscau4 24803 iscmet 24808 iscmet3lem1 24815 iscmet3 24817 equivcmet 24841 ulmcaulem 25913 ulmcau 25914 fsumdvdscom 26696 dchrisumlem3 27001 pntibndlem2 27101 pntibnd 27103 pntlemp 27120 ostth2lem2 27144 madebdayim 27390 no2indslem 27447 no3inds 27451 istrkgc 27743 istrkgb 27744 istrkge 27746 trgcgrg 27804 tgcgr4 27820 isismt 27823 nbgr2vtx1edg 28645 nbuhgr2vtx1edgb 28647 uvtxval 28682 uvtxel 28683 uvtxel1 28691 uvtxusgrel 28698 cusgredg 28719 cplgr3v 28730 cplgrop 28732 usgredgsscusgredg 28754 isrgr 28854 isewlk 28897 iswlk 28905 iswwlks 29128 wlkiswwlks2 29167 isclwwlk 29275 clwlkclwwlklem1 29290 isconngr 29480 isconngr1 29481 isfrgr 29551 frgr1v 29562 nfrgr2v 29563 frgr3v 29566 1vwmgr 29567 3vfriswmgr 29569 3cyclfrgrrn1 29576 n4cyclfrgr 29582 isplig 29767 gidval 29803 vciOLD 29852 isvclem 29868 isnvlem 29901 lnoval 30043 ajfval 30100 isphg 30108 minvecolem3 30167 htth 30209 ressprs 32171 mntoval 32190 mgcoval 32194 isslmd 32388 resv1r 32497 prmidlval 32600 mxidlval 32622 isufd 32677 rprmval 32678 iscref 32893 ordtrest2NEW 32972 fmcncfil 32980 issiga 33179 isrnsiga 33180 isldsys 33223 ismeas 33266 carsgval 33371 issibf 33401 sitgfval 33409 signstfvneq0 33652 istrkg2d 33747 ispconn 34283 issconn 34286 txpconn 34292 cvxpconn 34302 cvmscbv 34318 iscvm 34319 cvmsdisj 34330 cvmsss2 34334 snmlval 34391 elmrsubrn 34580 ismfs 34609 mclsval 34623 fwddifnval 35204 bj-ismoore 36072 pibp19 36381 pibp21 36382 poimirlem28 36602 cover2g 36670 seqpo 36701 incsequz2 36703 caushft 36715 ismtyval 36754 isass 36800 isexid 36801 elghomlem1OLD 36839 isrngo 36851 isrngod 36852 isgrpda 36909 rngohomval 36918 iscom2 36949 idlval 36967 pridlval 36987 maxidlval 36993 elrefrels3 37475 elcnvrefrels3 37491 eleqvrels3 37549 lflset 38015 islfld 38018 isopos 38136 isoml 38194 isatl 38255 iscvlat 38279 ishlat1 38308 psubspset 38701 lautset 39039 pautsetN 39055 ldilfset 39065 ltrnfset 39074 dilfsetN 39109 trnfsetN 39112 trnsetN 39113 trlfset 39117 tendofset 39715 tendoset 39716 dihffval 40187 lpolsetN 40439 hdmapfval 40784 hgmapfval 40843 aomclem8 41885 islnm 41901 clsk1independent 42879 gneispace2 42965 gneispaceel2 42977 gneispacess2 42979 caucvgbf 44279 ioodvbdlimc1lem1 44726 ioodvbdlimc1lem2 44727 ioodvbdlimc2lem 44729 issal 45109 ismea 45246 isome 45289 iccpartiltu 46169 iccelpart 46180 isomgr 46570 isupwlk 46593 mgmpropd 46624 ismgmd 46625 ismgmhm 46632 resmgmhm 46647 iscllaw 46678 iscomlaw 46679 isasslaw 46681 isrng 46729 rngpropd 46752 c0snmgmhm 46792 zlidlring 46905 uzlidlring 46906 dmatALTval 47159 islininds 47205 lindslinindsimp2 47222 ldepsnlinc 47267 elbigo 47315 iscnrm3r 47659 isprsd 47666 lubeldm2d 47669 glbeldm2d 47670 isthincd2lem2 47734 isthincd 47735 |
Copyright terms: Public domain | W3C validator |