Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2825 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 345 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3111 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-ral 3070 |
This theorem is referenced by: rspc2vd 3884 frd 5549 f12dfv 7154 f13dfv 7155 knatar 7237 ofrfvalg 7550 fmpox 7916 ovmptss 7942 frrlem4 8114 marypha1lem 9201 supeq123d 9218 oieq1 9280 acneq 9808 isfin1a 10057 fpwwe2cbv 10395 fpwwe2lem2 10397 fpwwecbv 10409 fpwwelem 10410 eltskg 10515 elgrug 10557 cau3lem 15075 rlim 15213 ello1 15233 elo1 15244 caurcvg2 15398 caucvgb 15400 fsum2dlem 15491 fsumcom2 15495 fprod2dlem 15699 fprodcom2 15703 pcfac 16609 vdwpc 16690 rami 16725 prmgaplem7 16767 prdsval 17175 ismre 17308 isacs2 17371 acsfiel 17372 iscat 17390 iscatd 17391 catidex 17392 catideu 17393 cidfval 17394 cidval 17395 catlid 17401 catrid 17402 comfeq 17424 catpropd 17427 monfval 17453 issubc 17559 fullsubc 17574 isfunc 17588 funcpropd 17625 isfull 17635 isfth 17639 fthpropd 17646 natfval 17671 initoval 17717 termoval 17718 isposd 18050 lubfval 18077 glbfval 18090 ismgm 18336 issstrmgm 18346 grpidval 18354 gsumvalx 18369 gsumpropd 18371 gsumress 18375 issgrp 18385 ismnddef 18396 ismndd 18416 mndpropd 18419 ismhm 18441 resmhm 18468 isgrp 18592 grppropd 18603 isgrpd2e 18607 isnsg 18792 nmznsg 18805 isghm 18843 isga 18906 subgga 18915 gsmsymgrfix 19045 gsmsymgreq 19049 gexval 19192 ispgp 19206 isslw 19222 sylow2blem2 19235 efgval 19332 efgi 19334 efgsdm 19345 cmnpropd 19405 iscmnd 19408 submcmn2 19449 gsumzaddlem 19531 dmdprd 19610 dprdcntz 19620 issrg 19752 isring 19796 ringpropd 19830 isirred 19950 sdrgacs 20078 abvfval 20087 abvpropd 20111 islmod 20136 islmodd 20138 lmodprop2d 20194 lssset 20204 islmhm 20298 reslmhm 20323 lmhmpropd 20344 islbs 20347 rrgval 20567 isdomn 20574 psgndiflemA 20815 isphl 20842 islindf 21028 islindf2 21030 lsslindf 21046 isassa 21072 isassad 21080 assapropd 21085 ltbval 21253 opsrval 21256 dmatval 21650 dmatcrng 21660 scmatcrng 21679 cpmat 21867 istopg 22053 restbas 22318 ordtrest2 22364 cnfval 22393 cnpfval 22394 ist0 22480 ist1 22481 ishaus 22482 iscnrm 22483 isnrm 22495 ist0-2 22504 ishaus2 22511 nrmsep3 22515 iscmp 22548 is1stc 22601 isptfin 22676 islocfin 22677 kgenval 22695 kgencn2 22717 txbas 22727 ptval 22730 dfac14 22778 isfil 23007 isufil 23063 isufl 23073 flfcntr 23203 ucnval 23438 iscusp 23460 prdsxmslem2 23694 tngngp3 23829 isnlm 23848 nmofval 23887 lebnumii 24138 iscau4 24452 iscmet 24457 iscmet3lem1 24464 iscmet3 24466 equivcmet 24490 ulmcaulem 25562 ulmcau 25563 fsumdvdscom 26343 dchrisumlem3 26648 pntibndlem2 26748 pntibnd 26750 pntlemp 26767 ostth2lem2 26791 trgcgrg 26885 tgcgr4 26901 isismt 26904 nbgr2vtx1edg 27726 nbuhgr2vtx1edgb 27728 uvtxval 27763 uvtxel 27764 uvtxel1 27772 uvtxusgrel 27779 cusgredg 27800 cplgr3v 27811 cplgrop 27813 usgredgsscusgredg 27835 isrgr 27935 isewlk 27978 iswlk 27986 iswwlks 28210 wlkiswwlks2 28249 isclwwlk 28357 clwlkclwwlklem1 28372 isconngr 28562 isconngr1 28563 isfrgr 28633 frgr1v 28644 nfrgr2v 28645 frgr3v 28648 1vwmgr 28649 3vfriswmgr 28651 3cyclfrgrrn1 28658 n4cyclfrgr 28664 isplig 28847 gidval 28883 vciOLD 28932 isvclem 28948 isnvlem 28981 lnoval 29123 ajfval 29180 isphg 29188 minvecolem3 29247 htth 29289 ressprs 31250 mntoval 31269 mgcoval 31273 isslmd 31464 resv1r 31550 prmidlval 31621 mxidlval 31642 isufd 31672 rprmval 31673 iscref 31803 ordtrest2NEW 31882 fmcncfil 31890 issiga 32089 isrnsiga 32090 isldsys 32133 ismeas 32176 carsgval 32279 issibf 32309 sitgfval 32317 signstfvneq0 32560 istrkg2d 32655 ispconn 33194 issconn 33197 txpconn 33203 cvxpconn 33213 cvmscbv 33229 iscvm 33230 cvmsdisj 33241 cvmsss2 33245 snmlval 33302 elmrsubrn 33491 ismfs 33520 mclsval 33534 on2ind 33837 on3ind 33838 madebdayim 34079 no2indslem 34120 no3inds 34124 fwddifnval 34474 bj-ismoore 35285 pibp19 35594 pibp21 35595 poimirlem28 35814 cover2g 35882 seqpo 35914 incsequz2 35916 caushft 35928 ismtyval 35967 isass 36013 isexid 36014 elghomlem1OLD 36052 isrngo 36064 isrngod 36065 isgrpda 36122 rngohomval 36131 iscom2 36162 idlval 36180 pridlval 36200 maxidlval 36206 elrefrels3 36643 elcnvrefrels3 36656 eleqvrels3 36713 lflset 37080 islfld 37083 isopos 37201 isoml 37259 isatl 37320 iscvlat 37344 ishlat1 37373 psubspset 37765 lautset 38103 pautsetN 38119 ldilfset 38129 ltrnfset 38138 dilfsetN 38173 trnfsetN 38176 trnsetN 38177 trlfset 38181 tendofset 38779 tendoset 38780 dihffval 39251 lpolsetN 39503 hdmapfval 39848 hgmapfval 39907 aomclem8 40893 islnm 40909 clsk1independent 41663 gneispace2 41749 gneispaceel2 41761 gneispacess2 41763 ioodvbdlimc1lem1 43479 ioodvbdlimc1lem2 43480 ioodvbdlimc2lem 43482 issal 43862 ismea 43996 isome 44039 iccpartiltu 44885 iccelpart 44896 isomgr 45286 isupwlk 45309 mgmpropd 45340 ismgmd 45341 ismgmhm 45348 resmgmhm 45363 iscllaw 45394 iscomlaw 45395 isasslaw 45397 isrng 45445 c0snmgmhm 45483 zlidlring 45497 uzlidlring 45498 dmatALTval 45752 islininds 45798 lindslinindsimp2 45815 ldepsnlinc 45860 elbigo 45908 iscnrm3r 46253 isprsd 46260 lubeldm2d 46263 glbeldm2d 46264 isthincd2lem2 46328 isthincd 46329 |
Copyright terms: Public domain | W3C validator |