Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | imbi12d 344 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
5 | 4 | ralbidv2 3118 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: rspc2vd 3879 frd 5539 f12dfv 7126 f13dfv 7127 knatar 7208 ofrfvalg 7519 fmpox 7880 ovmptss 7904 frrlem4 8076 marypha1lem 9122 supeq123d 9139 oieq1 9201 acneq 9730 isfin1a 9979 fpwwe2cbv 10317 fpwwe2lem2 10319 fpwwecbv 10331 fpwwelem 10332 eltskg 10437 elgrug 10479 cau3lem 14994 rlim 15132 ello1 15152 elo1 15163 caurcvg2 15317 caucvgb 15319 fsum2dlem 15410 fsumcom2 15414 fprod2dlem 15618 fprodcom2 15622 pcfac 16528 vdwpc 16609 rami 16644 prmgaplem7 16686 prdsval 17083 ismre 17216 isacs2 17279 acsfiel 17280 iscat 17298 iscatd 17299 catidex 17300 catideu 17301 cidfval 17302 cidval 17303 catlid 17309 catrid 17310 comfeq 17332 catpropd 17335 monfval 17361 issubc 17466 fullsubc 17481 isfunc 17495 funcpropd 17532 isfull 17542 isfth 17546 fthpropd 17553 natfval 17578 initoval 17624 termoval 17625 isposd 17956 lubfval 17983 glbfval 17996 ismgm 18242 issstrmgm 18252 grpidval 18260 gsumvalx 18275 gsumpropd 18277 gsumress 18281 issgrp 18291 ismnddef 18302 ismndd 18322 mndpropd 18325 ismhm 18347 resmhm 18374 isgrp 18498 grppropd 18509 isgrpd2e 18513 isnsg 18698 nmznsg 18711 isghm 18749 isga 18812 subgga 18821 gsmsymgrfix 18951 gsmsymgreq 18955 gexval 19098 ispgp 19112 isslw 19128 sylow2blem2 19141 efgval 19238 efgi 19240 efgsdm 19251 cmnpropd 19311 iscmnd 19314 submcmn2 19355 gsumzaddlem 19437 dmdprd 19516 dprdcntz 19526 issrg 19658 isring 19702 ringpropd 19736 isirred 19856 sdrgacs 19984 abvfval 19993 abvpropd 20017 islmod 20042 islmodd 20044 lmodprop2d 20100 lssset 20110 islmhm 20204 reslmhm 20229 lmhmpropd 20250 islbs 20253 rrgval 20471 isdomn 20478 psgndiflemA 20718 isphl 20745 islindf 20929 islindf2 20931 lsslindf 20947 isassa 20973 isassad 20981 assapropd 20986 ltbval 21154 opsrval 21157 dmatval 21549 dmatcrng 21559 scmatcrng 21578 cpmat 21766 istopg 21952 restbas 22217 ordtrest2 22263 cnfval 22292 cnpfval 22293 ist0 22379 ist1 22380 ishaus 22381 iscnrm 22382 isnrm 22394 ist0-2 22403 ishaus2 22410 nrmsep3 22414 iscmp 22447 is1stc 22500 isptfin 22575 islocfin 22576 kgenval 22594 kgencn2 22616 txbas 22626 ptval 22629 dfac14 22677 isfil 22906 isufil 22962 isufl 22972 flfcntr 23102 ucnval 23337 iscusp 23359 prdsxmslem2 23591 tngngp3 23726 isnlm 23745 nmofval 23784 lebnumii 24035 iscau4 24348 iscmet 24353 iscmet3lem1 24360 iscmet3 24362 equivcmet 24386 ulmcaulem 25458 ulmcau 25459 fsumdvdscom 26239 dchrisumlem3 26544 pntibndlem2 26644 pntibnd 26646 pntlemp 26663 ostth2lem2 26687 trgcgrg 26780 tgcgr4 26796 isismt 26799 nbgr2vtx1edg 27620 nbuhgr2vtx1edgb 27622 uvtxval 27657 uvtxel 27658 uvtxel1 27666 uvtxusgrel 27673 cusgredg 27694 cplgr3v 27705 cplgrop 27707 usgredgsscusgredg 27729 isrgr 27829 isewlk 27872 iswlk 27880 iswwlks 28102 wlkiswwlks2 28141 isclwwlk 28249 clwlkclwwlklem1 28264 isconngr 28454 isconngr1 28455 isfrgr 28525 frgr1v 28536 nfrgr2v 28537 frgr3v 28540 1vwmgr 28541 3vfriswmgr 28543 3cyclfrgrrn1 28550 n4cyclfrgr 28556 isplig 28739 gidval 28775 vciOLD 28824 isvclem 28840 isnvlem 28873 lnoval 29015 ajfval 29072 isphg 29080 minvecolem3 29139 htth 29181 ressprs 31143 mntoval 31162 mgcoval 31166 isslmd 31357 resv1r 31443 prmidlval 31514 mxidlval 31535 isufd 31565 rprmval 31566 iscref 31696 ordtrest2NEW 31775 fmcncfil 31783 issiga 31980 isrnsiga 31981 isldsys 32024 ismeas 32067 carsgval 32170 issibf 32200 sitgfval 32208 signstfvneq0 32451 istrkg2d 32546 ispconn 33085 issconn 33088 txpconn 33094 cvxpconn 33104 cvmscbv 33120 iscvm 33121 cvmsdisj 33132 cvmsss2 33136 snmlval 33193 elmrsubrn 33382 ismfs 33411 mclsval 33425 on2ind 33755 on3ind 33756 madebdayim 33997 no2indslem 34038 no3inds 34042 fwddifnval 34392 bj-ismoore 35203 pibp19 35512 pibp21 35513 poimirlem28 35732 cover2g 35800 seqpo 35832 incsequz2 35834 caushft 35846 ismtyval 35885 isass 35931 isexid 35932 elghomlem1OLD 35970 isrngo 35982 isrngod 35983 isgrpda 36040 rngohomval 36049 iscom2 36080 idlval 36098 pridlval 36118 maxidlval 36124 elrefrels3 36563 elcnvrefrels3 36576 eleqvrels3 36633 lflset 37000 islfld 37003 isopos 37121 isoml 37179 isatl 37240 iscvlat 37264 ishlat1 37293 psubspset 37685 lautset 38023 pautsetN 38039 ldilfset 38049 ltrnfset 38058 dilfsetN 38093 trnfsetN 38096 trnsetN 38097 trlfset 38101 tendofset 38699 tendoset 38700 dihffval 39171 lpolsetN 39423 hdmapfval 39768 hgmapfval 39827 aomclem8 40802 islnm 40818 clsk1independent 41545 gneispace2 41631 gneispaceel2 41643 gneispacess2 41645 ioodvbdlimc1lem1 43362 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 issal 43745 ismea 43879 isome 43922 iccpartiltu 44762 iccelpart 44773 isomgr 45163 isupwlk 45186 mgmpropd 45217 ismgmd 45218 ismgmhm 45225 resmgmhm 45240 iscllaw 45271 iscomlaw 45272 isasslaw 45274 isrng 45322 c0snmgmhm 45360 zlidlring 45374 uzlidlring 45375 dmatALTval 45629 islininds 45675 lindslinindsimp2 45692 ldepsnlinc 45737 elbigo 45785 iscnrm3r 46130 isprsd 46137 lubeldm2d 46140 glbeldm2d 46141 isthincd2lem2 46205 isthincd 46206 |
Copyright terms: Public domain | W3C validator |