|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexeqbii | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| rexeqbii.1 | ⊢ 𝐴 = 𝐵 | 
| rexeqbii.2 | ⊢ (𝜓 ↔ 𝜒) | 
| Ref | Expression | 
|---|---|
| rexeqbii | ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeqbii.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2832 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | 
| 3 | rexeqbii.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) | 
| 5 | 4 | rexbii2 3089 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-rex 3070 | 
| This theorem is referenced by: 1arithidom 33566 bnj882 34941 satfbrsuc 35372 iuneq12i 36197 | 
| Copyright terms: Public domain | W3C validator |