Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralimralim | Structured version Visualization version GIF version |
Description: Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ralimralim | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3144 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
2 | rspa 3132 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | |
3 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜑)) |
5 | 4 | ex 413 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) |
6 | 1, 5 | ralrimi 3141 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-ral 3069 |
This theorem is referenced by: infxrunb2 42907 |
Copyright terms: Public domain | W3C validator |