Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelmap | Structured version Visualization version GIF version |
Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
snelmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
snelmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
snelmap.n | ⊢ (𝜑 → 𝐴 ≠ ∅) |
snelmap.e | ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) |
Ref | Expression |
---|---|
snelmap | ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelmap.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | n0 4277 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) |
4 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | fvconst2 7061 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥) |
6 | 5 | eqcomd 2744 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
8 | snelmap.e | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) | |
9 | snelmap.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | snelmap.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | elmapg 8586 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) |
13 | 8, 12 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {𝑥}):𝐴⟶𝐵) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐵) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
16 | 14, 15 | ffvelrnd 6944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵) |
17 | 7, 16 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
19 | 18 | exlimdv 1937 | . 2 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
20 | 3, 19 | mpd 15 | 1 ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {csn 4558 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 |
This theorem is referenced by: mapssbi 42642 |
Copyright terms: Public domain | W3C validator |