| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelmap | Structured version Visualization version GIF version | ||
| Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| snelmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| snelmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| snelmap.n | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| snelmap.e | ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) |
| Ref | Expression |
|---|---|
| snelmap | ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelmap.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | n0 4324 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) |
| 4 | vex 3459 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4 | fvconst2 7185 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥) |
| 6 | 5 | eqcomd 2736 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
| 8 | snelmap.e | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) | |
| 9 | snelmap.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | snelmap.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | elmapg 8816 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) |
| 13 | 8, 12 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {𝑥}):𝐴⟶𝐵) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐵) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 16 | 14, 15 | ffvelcdmd 7064 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵) |
| 17 | 7, 16 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 19 | 18 | exlimdv 1933 | . 2 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 20 | 3, 19 | mpd 15 | 1 ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2927 ∅c0 4304 {csn 4597 × cxp 5644 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ↑m cmap 8803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-map 8805 |
| This theorem is referenced by: mapssbi 45179 |
| Copyright terms: Public domain | W3C validator |