| Mathbox for Glauco Siliprandi | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelmap | Structured version Visualization version GIF version | ||
| Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| snelmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| snelmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| snelmap.n | ⊢ (𝜑 → 𝐴 ≠ ∅) | 
| snelmap.e | ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) | 
| Ref | Expression | 
|---|---|
| snelmap | ⊢ (𝜑 → 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snelmap.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | n0 4333 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) | 
| 4 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | 4 | fvconst2 7205 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥) | 
| 6 | 5 | eqcomd 2740 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) | 
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) | 
| 8 | snelmap.e | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) | |
| 9 | snelmap.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | snelmap.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | elmapg 8860 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) | 
| 13 | 8, 12 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {𝑥}):𝐴⟶𝐵) | 
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐵) | 
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 16 | 14, 15 | ffvelcdmd 7084 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵) | 
| 17 | 7, 16 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐵) | 
| 18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | 
| 19 | 18 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | 
| 20 | 3, 19 | mpd 15 | 1 ⊢ (𝜑 → 𝑥 ∈ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 {csn 4606 × cxp 5663 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8849 | 
| This theorem is referenced by: mapssbi 45151 | 
| Copyright terms: Public domain | W3C validator |