![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelmap | Structured version Visualization version GIF version |
Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
snelmap.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
snelmap.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
snelmap.n | ⊢ (𝜑 → 𝐴 ≠ ∅) |
snelmap.e | ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) |
Ref | Expression |
---|---|
snelmap | ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelmap.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | n0 4376 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) |
4 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | fvconst2 7243 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥) |
6 | 5 | eqcomd 2746 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦)) |
8 | snelmap.e | . . . . . . . 8 ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴)) | |
9 | snelmap.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | snelmap.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | elmapg 8899 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑥}):𝐴⟶𝐵)) |
13 | 8, 12 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {𝑥}):𝐴⟶𝐵) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐴 × {𝑥}):𝐴⟶𝐵) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
16 | 14, 15 | ffvelcdmd 7121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵) |
17 | 7, 16 | eqeltrd 2844 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
18 | 17 | ex 412 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
19 | 18 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑦 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
20 | 3, 19 | mpd 15 | 1 ⊢ (𝜑 → 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 × cxp 5698 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ↑m cmap 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-map 8888 |
This theorem is referenced by: mapssbi 45122 |
Copyright terms: Public domain | W3C validator |