Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑥 𝐴 ⊆
ℝ* |
2 | | nfra1 3144 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥 |
3 | 1, 2 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) |
4 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑦 𝐴 ⊆
ℝ* |
5 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑦ℝ |
6 | | nfre1 3239 |
. . . . . 6
⊢
Ⅎ𝑦∃𝑦 ∈ 𝐴 𝑦 < 𝑥 |
7 | 5, 6 | nfralw 3151 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥 |
8 | 4, 7 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) |
9 | | simpl 483 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) → 𝐴 ⊆
ℝ*) |
10 | | mnfxr 11032 |
. . . . 5
⊢ -∞
∈ ℝ* |
11 | 10 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) → -∞ ∈
ℝ*) |
12 | | ssel2 3916 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
13 | | nltmnf 12865 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ*
→ ¬ 𝑥 <
-∞) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 < -∞) |
15 | 14 | ralrimiva 3103 |
. . . . 5
⊢ (𝐴 ⊆ ℝ*
→ ∀𝑥 ∈
𝐴 ¬ 𝑥 < -∞) |
16 | 15 | adantr 481 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) → ∀𝑥 ∈ 𝐴 ¬ 𝑥 < -∞) |
17 | | ralimralim 42631 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥 → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
18 | 17 | adantl 482 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
19 | 3, 8, 9, 11, 16, 18 | infxr 42906 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥) → inf(𝐴, ℝ*, < ) =
-∞) |
20 | 19 | ex 413 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥 → inf(𝐴, ℝ*, < ) =
-∞)) |
21 | | rexr 11021 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
22 | 21 | adantl 482 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*) |
23 | | simpl 483 |
. . . . . . 7
⊢
((inf(𝐴,
ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) =
-∞) |
24 | | mnflt 12859 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → -∞
< 𝑥) |
25 | 24 | adantl 482 |
. . . . . . 7
⊢
((inf(𝐴,
ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → -∞ < 𝑥) |
26 | 23, 25 | eqbrtrd 5096 |
. . . . . 6
⊢
((inf(𝐴,
ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥) |
27 | 26 | adantll 711 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥) |
28 | | xrltso 12875 |
. . . . . . 7
⊢ < Or
ℝ* |
29 | 28 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → < Or
ℝ*) |
30 | | xrinfmss 13044 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑧 ∈
ℝ* (∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤))) |
31 | 30 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ*
(∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤))) |
32 | 29, 31 | infglb 9249 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ* ∧ inf(𝐴, ℝ*, < )
< 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
33 | 22, 27, 32 | mp2and 696 |
. . . 4
⊢ (((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑥) |
34 | 33 | ralrimiva 3103 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ inf(𝐴,
ℝ*, < ) = -∞) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥) |
35 | 34 | ex 413 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (inf(𝐴,
ℝ*, < ) = -∞ → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
36 | 20, 35 | impbid 211 |
1
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) =
-∞)) |