Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb2 Structured version   Visualization version   GIF version

Theorem infxrunb2 45414
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
infxrunb2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
Distinct variable group:   𝑦,𝐴,𝑥

Proof of Theorem infxrunb2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑥 𝐴 ⊆ ℝ*
2 nfra1 3256 . . . . 5 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
31, 2nfan 1900 . . . 4 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
4 nfv 1915 . . . . 5 𝑦 𝐴 ⊆ ℝ*
5 nfcv 2894 . . . . . 6 𝑦
6 nfre1 3257 . . . . . 6 𝑦𝑦𝐴 𝑦 < 𝑥
75, 6nfralw 3279 . . . . 5 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
84, 7nfan 1900 . . . 4 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
9 simpl 482 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → 𝐴 ⊆ ℝ*)
10 mnfxr 11169 . . . . 5 -∞ ∈ ℝ*
1110a1i 11 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → -∞ ∈ ℝ*)
12 ssel2 3924 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
13 nltmnf 13028 . . . . . . 7 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
1412, 13syl 17 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥𝐴) → ¬ 𝑥 < -∞)
1514ralrimiva 3124 . . . . 5 (𝐴 ⊆ ℝ* → ∀𝑥𝐴 ¬ 𝑥 < -∞)
1615adantr 480 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥𝐴 ¬ 𝑥 < -∞)
17 ralimralim 45126 . . . . 5 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
1817adantl 481 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
193, 8, 9, 11, 16, 18infxr 45413 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → inf(𝐴, ℝ*, < ) = -∞)
2019ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → inf(𝐴, ℝ*, < ) = -∞))
21 rexr 11158 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2221adantl 481 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 simpl 482 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) = -∞)
24 mnflt 13022 . . . . . . . 8 (𝑥 ∈ ℝ → -∞ < 𝑥)
2524adantl 481 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → -∞ < 𝑥)
2623, 25eqbrtrd 5111 . . . . . 6 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
2726adantll 714 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
28 xrltso 13040 . . . . . . 7 < Or ℝ*
2928a1i 11 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → < Or ℝ*)
30 xrinfmss 13209 . . . . . . 7 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3130ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3229, 31infglb 9375 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ* ∧ inf(𝐴, ℝ*, < ) < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥))
3322, 27, 32mp2and 699 . . . 4 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑥)
3433ralrimiva 3124 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
3534ex 412 . 2 (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥))
3620, 35impbid 212 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5089   Or wor 5521  infcinf 9325  cr 11005  -∞cmnf 11144  *cxr 11145   < clt 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347
This theorem is referenced by:  infxrbnd2  45415  infleinf  45418  infxrunb3  45470  supminfxr  45510
  Copyright terms: Public domain W3C validator