Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb2 Structured version   Visualization version   GIF version

Theorem infxrunb2 45347
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
infxrunb2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
Distinct variable group:   𝑦,𝐴,𝑥

Proof of Theorem infxrunb2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑥 𝐴 ⊆ ℝ*
2 nfra1 3253 . . . . 5 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
31, 2nfan 1899 . . . 4 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
4 nfv 1914 . . . . 5 𝑦 𝐴 ⊆ ℝ*
5 nfcv 2891 . . . . . 6 𝑦
6 nfre1 3254 . . . . . 6 𝑦𝑦𝐴 𝑦 < 𝑥
75, 6nfralw 3276 . . . . 5 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
84, 7nfan 1899 . . . 4 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
9 simpl 482 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → 𝐴 ⊆ ℝ*)
10 mnfxr 11172 . . . . 5 -∞ ∈ ℝ*
1110a1i 11 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → -∞ ∈ ℝ*)
12 ssel2 3930 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
13 nltmnf 13031 . . . . . . 7 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
1412, 13syl 17 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥𝐴) → ¬ 𝑥 < -∞)
1514ralrimiva 3121 . . . . 5 (𝐴 ⊆ ℝ* → ∀𝑥𝐴 ¬ 𝑥 < -∞)
1615adantr 480 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥𝐴 ¬ 𝑥 < -∞)
17 ralimralim 45059 . . . . 5 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
1817adantl 481 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
193, 8, 9, 11, 16, 18infxr 45346 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → inf(𝐴, ℝ*, < ) = -∞)
2019ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → inf(𝐴, ℝ*, < ) = -∞))
21 rexr 11161 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2221adantl 481 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 simpl 482 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) = -∞)
24 mnflt 13025 . . . . . . . 8 (𝑥 ∈ ℝ → -∞ < 𝑥)
2524adantl 481 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → -∞ < 𝑥)
2623, 25eqbrtrd 5114 . . . . . 6 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
2726adantll 714 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
28 xrltso 13043 . . . . . . 7 < Or ℝ*
2928a1i 11 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → < Or ℝ*)
30 xrinfmss 13212 . . . . . . 7 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3130ad2antrr 726 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3229, 31infglb 9381 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ* ∧ inf(𝐴, ℝ*, < ) < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥))
3322, 27, 32mp2and 699 . . . 4 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑥)
3433ralrimiva 3121 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
3534ex 412 . 2 (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥))
3620, 35impbid 212 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092   Or wor 5526  infcinf 9331  cr 11008  -∞cmnf 11147  *cxr 11148   < clt 11149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350
This theorem is referenced by:  infxrbnd2  45348  infleinf  45351  infxrunb3  45403  supminfxr  45443
  Copyright terms: Public domain W3C validator