Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | ssdf 42514 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: iinssiin 42567 funimassd 42659 icomnfinre 42980 fnlimfvre 43105 allbutfifvre 43106 limsupresico 43131 liminfresico 43202 limsupgtlem 43208 cnrefiisplem 43260 xlimliminflimsup 43293 rrxsnicc 43731 meaiuninclem 43908 meaiininclem 43914 borelmbl 44064 smflimlem1 44193 smflimlem2 44194 smfpimbor1lem1 44219 smfpimbor1lem2 44220 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |