Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45125
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45120 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-ral 3048  df-ss 3914
This theorem is referenced by:  iinssiin  45174  restopnssd  45197  icomnfinre  45600  fnlimfvre  45720  allbutfifvre  45721  limsupresico  45746  liminfresico  45817  limsupgtlem  45823  cnrefiisplem  45875  xlimliminflimsup  45908  rrxsnicc  46346  salrestss  46407  meaiuninclem  46526  meaiininclem  46532  borelmbl  46682  smflimlem1  46817  smflimlem2  46818  smfpimbor1lem1  46844  smfpimbor1lem2  46845  smfsuplem1  46857
  Copyright terms: Public domain W3C validator