Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45047
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45042 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-ss 3928
This theorem is referenced by:  iinssiin  45096  restopnssd  45119  icomnfinre  45523  fnlimfvre  45645  allbutfifvre  45646  limsupresico  45671  liminfresico  45742  limsupgtlem  45748  cnrefiisplem  45800  xlimliminflimsup  45833  rrxsnicc  46271  salrestss  46332  meaiuninclem  46451  meaiininclem  46457  borelmbl  46607  smflimlem1  46742  smflimlem2  46743  smfpimbor1lem1  46769  smfpimbor1lem2  46770  smfsuplem1  46782
  Copyright terms: Public domain W3C validator