![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 2010 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | ssdf 40006 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ral 3094 df-in 3776 df-ss 3783 |
This theorem is referenced by: funimassd 40179 icomnfinre 40523 fnlimfvre 40650 allbutfifvre 40651 limsupresico 40676 liminfresico 40747 limsupgtlem 40753 cnrefiisplem 40799 rrxsnicc 41263 meaiuninclem 41440 meaiininclem 41446 borelmbl 41596 smflimlem1 41725 smflimlem2 41726 smfpimbor1lem1 41751 smfpimbor1lem2 41752 smfsuplem1 41763 |
Copyright terms: Public domain | W3C validator |