![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version |
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | ssdf 44977 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 df-ss 3993 |
This theorem is referenced by: iinssiin 45031 restopnssd 45057 icomnfinre 45470 fnlimfvre 45595 allbutfifvre 45596 limsupresico 45621 liminfresico 45692 limsupgtlem 45698 cnrefiisplem 45750 xlimliminflimsup 45783 rrxsnicc 46221 salrestss 46282 meaiuninclem 46401 meaiininclem 46407 borelmbl 46557 smflimlem1 46692 smflimlem2 46693 smfpimbor1lem1 46719 smfpimbor1lem2 46720 smfsuplem1 46732 |
Copyright terms: Public domain | W3C validator |