Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45020
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1912 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45015 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-ral 3060  df-ss 3980
This theorem is referenced by:  iinssiin  45069  restopnssd  45095  icomnfinre  45505  fnlimfvre  45630  allbutfifvre  45631  limsupresico  45656  liminfresico  45727  limsupgtlem  45733  cnrefiisplem  45785  xlimliminflimsup  45818  rrxsnicc  46256  salrestss  46317  meaiuninclem  46436  meaiininclem  46442  borelmbl  46592  smflimlem1  46727  smflimlem2  46728  smfpimbor1lem1  46754  smfpimbor1lem2  46755  smfsuplem1  46767
  Copyright terms: Public domain W3C validator