| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | ssdf 45066 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3053 df-ss 3948 |
| This theorem is referenced by: iinssiin 45120 restopnssd 45143 icomnfinre 45548 fnlimfvre 45670 allbutfifvre 45671 limsupresico 45696 liminfresico 45767 limsupgtlem 45773 cnrefiisplem 45825 xlimliminflimsup 45858 rrxsnicc 46296 salrestss 46357 meaiuninclem 46476 meaiininclem 46482 borelmbl 46632 smflimlem1 46767 smflimlem2 46768 smfpimbor1lem1 46794 smfpimbor1lem2 46795 smfsuplem1 46807 |
| Copyright terms: Public domain | W3C validator |