Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45058
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45053 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-ss 3920
This theorem is referenced by:  iinssiin  45107  restopnssd  45130  icomnfinre  45533  fnlimfvre  45655  allbutfifvre  45656  limsupresico  45681  liminfresico  45752  limsupgtlem  45758  cnrefiisplem  45810  xlimliminflimsup  45843  rrxsnicc  46281  salrestss  46342  meaiuninclem  46461  meaiininclem  46467  borelmbl  46617  smflimlem1  46752  smflimlem2  46753  smfpimbor1lem1  46779  smfpimbor1lem2  46780  smfsuplem1  46792
  Copyright terms: Public domain W3C validator