| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | ssdf 45120 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 df-ss 3914 |
| This theorem is referenced by: iinssiin 45174 restopnssd 45197 icomnfinre 45600 fnlimfvre 45720 allbutfifvre 45721 limsupresico 45746 liminfresico 45817 limsupgtlem 45823 cnrefiisplem 45875 xlimliminflimsup 45908 rrxsnicc 46346 salrestss 46407 meaiuninclem 46526 meaiininclem 46532 borelmbl 46682 smflimlem1 46817 smflimlem2 46818 smfpimbor1lem1 46844 smfpimbor1lem2 46845 smfsuplem1 46857 |
| Copyright terms: Public domain | W3C validator |