| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssd | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ssd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | ssdf 45042 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-ss 3928 |
| This theorem is referenced by: iinssiin 45096 restopnssd 45119 icomnfinre 45523 fnlimfvre 45645 allbutfifvre 45646 limsupresico 45671 liminfresico 45742 limsupgtlem 45748 cnrefiisplem 45800 xlimliminflimsup 45833 rrxsnicc 46271 salrestss 46332 meaiuninclem 46451 meaiininclem 46457 borelmbl 46607 smflimlem1 46742 smflimlem2 46743 smfpimbor1lem1 46769 smfpimbor1lem2 46770 smfsuplem1 46782 |
| Copyright terms: Public domain | W3C validator |