Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45071
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45066 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3053  df-ss 3948
This theorem is referenced by:  iinssiin  45120  restopnssd  45143  icomnfinre  45548  fnlimfvre  45670  allbutfifvre  45671  limsupresico  45696  liminfresico  45767  limsupgtlem  45773  cnrefiisplem  45825  xlimliminflimsup  45858  rrxsnicc  46296  salrestss  46357  meaiuninclem  46476  meaiininclem  46482  borelmbl  46632  smflimlem1  46767  smflimlem2  46768  smfpimbor1lem1  46794  smfpimbor1lem2  46795  smfsuplem1  46807
  Copyright terms: Public domain W3C validator