Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 44982
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 44977 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-ral 3068  df-ss 3993
This theorem is referenced by:  iinssiin  45031  restopnssd  45057  icomnfinre  45470  fnlimfvre  45595  allbutfifvre  45596  limsupresico  45621  liminfresico  45692  limsupgtlem  45698  cnrefiisplem  45750  xlimliminflimsup  45783  rrxsnicc  46221  salrestss  46282  meaiuninclem  46401  meaiininclem  46407  borelmbl  46557  smflimlem1  46692  smflimlem2  46693  smfpimbor1lem1  46719  smfpimbor1lem2  46720  smfsuplem1  46732
  Copyright terms: Public domain W3C validator