Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45074
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45069 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-ss 3931
This theorem is referenced by:  iinssiin  45123  restopnssd  45146  icomnfinre  45550  fnlimfvre  45672  allbutfifvre  45673  limsupresico  45698  liminfresico  45769  limsupgtlem  45775  cnrefiisplem  45827  xlimliminflimsup  45860  rrxsnicc  46298  salrestss  46359  meaiuninclem  46478  meaiininclem  46484  borelmbl  46634  smflimlem1  46769  smflimlem2  46770  smfpimbor1lem1  46796  smfpimbor1lem2  46797  smfsuplem1  46809
  Copyright terms: Public domain W3C validator