Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45067
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45062 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-ss 3928
This theorem is referenced by:  iinssiin  45116  restopnssd  45139  icomnfinre  45543  fnlimfvre  45665  allbutfifvre  45666  limsupresico  45691  liminfresico  45762  limsupgtlem  45768  cnrefiisplem  45820  xlimliminflimsup  45853  rrxsnicc  46291  salrestss  46352  meaiuninclem  46471  meaiininclem  46477  borelmbl  46627  smflimlem1  46762  smflimlem2  46763  smfpimbor1lem1  46789  smfpimbor1lem2  46790  smfsuplem1  46802
  Copyright terms: Public domain W3C validator