Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssd Structured version   Visualization version   GIF version

Theorem ssd 45081
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
ssd.1 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssd (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem ssd
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 ssd.1 . 2 ((𝜑𝑥𝐴) → 𝑥𝐵)
31, 2ssdf 45076 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3046  df-ss 3934
This theorem is referenced by:  iinssiin  45130  restopnssd  45153  icomnfinre  45557  fnlimfvre  45679  allbutfifvre  45680  limsupresico  45705  liminfresico  45776  limsupgtlem  45782  cnrefiisplem  45834  xlimliminflimsup  45867  rrxsnicc  46305  salrestss  46366  meaiuninclem  46485  meaiininclem  46491  borelmbl  46641  smflimlem1  46776  smflimlem2  46777  smfpimbor1lem1  46803  smfpimbor1lem2  46804  smfsuplem1  46816
  Copyright terms: Public domain W3C validator