MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralnex3 Structured version   Visualization version   GIF version

Theorem ralnex3 3191
Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) (Proof shortened by Wolf Lammen, 18-May-2023.)
Assertion
Ref Expression
ralnex3 (∀𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)

Proof of Theorem ralnex3
StepHypRef Expression
1 ralnex 3165 . . 3 (∀𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃𝑧𝐶 𝜑)
212ralbii 3093 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 ¬ ∃𝑧𝐶 𝜑)
3 ralnex2 3190 . 2 (∀𝑥𝐴𝑦𝐵 ¬ ∃𝑧𝐶 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)
42, 3bitri 274 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wral 3065  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-ral 3070  df-rex 3071
This theorem is referenced by:  axtgupdim2  26813
  Copyright terms: Public domain W3C validator