MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgupdim2 Structured version   Visualization version   GIF version

Theorem axtgupdim2 26832
Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgupdim2.x (𝜑𝑋𝑃)
axtgupdim2.y (𝜑𝑌𝑃)
axtgupdim2.z (𝜑𝑍𝑃)
axtgupdim2.u (𝜑𝑈𝑃)
axtgupdim2.v (𝜑𝑉𝑃)
axtgupdim2.0 (𝜑𝑈𝑉)
axtgupdim2.1 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
axtgupdim2.2 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
axtgupdim2.3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
axtgupdim2.w (𝜑𝐺𝑉)
axtgupdim2.g (𝜑 → ¬ 𝐺DimTarskiG≥3)
Assertion
Ref Expression
axtgupdim2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2.1 . . 3 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
2 axtgupdim2.2 . . 3 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
3 axtgupdim2.3 . . 3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
4 axtgupdim2.0 . . . . . . 7 (𝜑𝑈𝑉)
5 axtgupdim2.g . . . . . . . . . . 11 (𝜑 → ¬ 𝐺DimTarskiG≥3)
6 axtgupdim2.w . . . . . . . . . . . 12 (𝜑𝐺𝑉)
7 axtrkge.p . . . . . . . . . . . . 13 𝑃 = (Base‘𝐺)
8 axtrkge.d . . . . . . . . . . . . 13 = (dist‘𝐺)
9 axtrkge.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg3ld 26822 . . . . . . . . . . . 12 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
125, 11mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
13 ralnex2 3189 . . . . . . . . . 10 (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1412, 13sylibr 233 . . . . . . . . 9 (𝜑 → ∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 axtgupdim2.u . . . . . . . . . 10 (𝜑𝑈𝑃)
16 axtgupdim2.v . . . . . . . . . 10 (𝜑𝑉𝑃)
17 neeq1 3006 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
18 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑥) = (𝑈 𝑥))
1918eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑣 𝑥)))
20 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑦) = (𝑈 𝑦))
2120eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑣 𝑦)))
22 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑧) = (𝑈 𝑧))
2322eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑣 𝑧)))
2419, 21, 233anbi123d 1435 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑈 → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧))))
2524anbi1d 630 . . . . . . . . . . . . . . 15 (𝑢 = 𝑈 → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2625rexbidv 3226 . . . . . . . . . . . . . 14 (𝑢 = 𝑈 → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
27262rexbidv 3229 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2817, 27anbi12d 631 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ((𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
2928notbid 318 . . . . . . . . . . 11 (𝑢 = 𝑈 → (¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
30 neeq2 3007 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
31 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑥) = (𝑉 𝑥))
3231eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑉 𝑥)))
33 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑦) = (𝑉 𝑦))
3433eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑉 𝑦)))
35 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑧) = (𝑉 𝑧))
3635eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑉 𝑧)))
3732, 34, 363anbi123d 1435 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑉 → (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
3837anbi1d 630 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3938rexbidv 3226 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
40392rexbidv 3229 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4130, 40anbi12d 631 . . . . . . . . . . . 12 (𝑣 = 𝑉 → ((𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4241notbid 318 . . . . . . . . . . 11 (𝑣 = 𝑉 → (¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4329, 42rspc2v 3570 . . . . . . . . . 10 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4415, 16, 43syl2anc 584 . . . . . . . . 9 (𝜑 → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4514, 44mpd 15 . . . . . . . 8 (𝜑 → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
46 imnan 400 . . . . . . . 8 ((𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4745, 46sylibr 233 . . . . . . 7 (𝜑 → (𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
484, 47mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
49 ralnex3 3190 . . . . . 6 (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
5048, 49sylibr 233 . . . . 5 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
51 axtgupdim2.x . . . . . 6 (𝜑𝑋𝑃)
52 axtgupdim2.y . . . . . 6 (𝜑𝑌𝑃)
53 axtgupdim2.z . . . . . 6 (𝜑𝑍𝑃)
54 oveq2 7283 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑈 𝑥) = (𝑈 𝑋))
55 oveq2 7283 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑉 𝑥) = (𝑉 𝑋))
5654, 55eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑈 𝑥) = (𝑉 𝑥) ↔ (𝑈 𝑋) = (𝑉 𝑋)))
57563anbi1d 1439 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
58 oveq1 7282 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
5958eleq2d 2824 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
60 eleq1 2826 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
61 oveq1 7282 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
6261eleq2d 2824 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
6359, 60, 623orbi123d 1434 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6463notbid 318 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6557, 64anbi12d 631 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
6665notbid 318 . . . . . . 7 (𝑥 = 𝑋 → (¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
67 oveq2 7283 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑈 𝑦) = (𝑈 𝑌))
68 oveq2 7283 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑉 𝑦) = (𝑉 𝑌))
6967, 68eqeq12d 2754 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑈 𝑦) = (𝑉 𝑦) ↔ (𝑈 𝑌) = (𝑉 𝑌)))
70693anbi2d 1440 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
71 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
7271eleq2d 2824 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
73 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
7473eleq2d 2824 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
75 eleq1 2826 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
7672, 74, 753orbi123d 1434 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7776notbid 318 . . . . . . . . 9 (𝑦 = 𝑌 → (¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7870, 77anbi12d 631 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
7978notbid 318 . . . . . . 7 (𝑦 = 𝑌 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
80 oveq2 7283 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑈 𝑧) = (𝑈 𝑍))
81 oveq2 7283 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑉 𝑧) = (𝑉 𝑍))
8280, 81eqeq12d 2754 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑈 𝑧) = (𝑉 𝑧) ↔ (𝑈 𝑍) = (𝑉 𝑍)))
83823anbi3d 1441 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍))))
84 eleq1 2826 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
85 oveq1 7282 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
8685eleq2d 2824 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
87 oveq2 7283 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
8887eleq2d 2824 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
8984, 86, 883orbi123d 1434 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9089notbid 318 . . . . . . . . 9 (𝑧 = 𝑍 → (¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9183, 90anbi12d 631 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9291notbid 318 . . . . . . 7 (𝑧 = 𝑍 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9366, 79, 92rspc3v 3573 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9451, 52, 53, 93syl3anc 1370 . . . . 5 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9550, 94mpd 15 . . . 4 (𝜑 → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
96 imnan 400 . . . 4 ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9795, 96sylibr 233 . . 3 (𝜑 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
981, 2, 3, 97mp3and 1463 . 2 (𝜑 → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
9998notnotrd 133 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  3c3 12029  Basecbs 16912  distcds 16971  DimTarskiGcstrkgld 26792  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-trkgld 26813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator