MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgupdim2 Structured version   Visualization version   GIF version

Theorem axtgupdim2 26251
Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgupdim2.x (𝜑𝑋𝑃)
axtgupdim2.y (𝜑𝑌𝑃)
axtgupdim2.z (𝜑𝑍𝑃)
axtgupdim2.u (𝜑𝑈𝑃)
axtgupdim2.v (𝜑𝑉𝑃)
axtgupdim2.0 (𝜑𝑈𝑉)
axtgupdim2.1 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
axtgupdim2.2 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
axtgupdim2.3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
axtgupdim2.w (𝜑𝐺𝑉)
axtgupdim2.g (𝜑 → ¬ 𝐺DimTarskiG≥3)
Assertion
Ref Expression
axtgupdim2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2.1 . . 3 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
2 axtgupdim2.2 . . 3 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
3 axtgupdim2.3 . . 3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
4 axtgupdim2.0 . . . . . . 7 (𝜑𝑈𝑉)
5 axtgupdim2.g . . . . . . . . . . 11 (𝜑 → ¬ 𝐺DimTarskiG≥3)
6 axtgupdim2.w . . . . . . . . . . . 12 (𝜑𝐺𝑉)
7 axtrkge.p . . . . . . . . . . . . 13 𝑃 = (Base‘𝐺)
8 axtrkge.d . . . . . . . . . . . . 13 = (dist‘𝐺)
9 axtrkge.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg3ld 26241 . . . . . . . . . . . 12 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
125, 11mtbid 326 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
13 ralnex2 3260 . . . . . . . . . 10 (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1412, 13sylibr 236 . . . . . . . . 9 (𝜑 → ∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 axtgupdim2.u . . . . . . . . . 10 (𝜑𝑈𝑃)
16 axtgupdim2.v . . . . . . . . . 10 (𝜑𝑉𝑃)
17 neeq1 3078 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
18 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑥) = (𝑈 𝑥))
1918eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑣 𝑥)))
20 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑦) = (𝑈 𝑦))
2120eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑣 𝑦)))
22 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑧) = (𝑈 𝑧))
2322eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑣 𝑧)))
2419, 21, 233anbi123d 1432 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑈 → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧))))
2524anbi1d 631 . . . . . . . . . . . . . . 15 (𝑢 = 𝑈 → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2625rexbidv 3297 . . . . . . . . . . . . . 14 (𝑢 = 𝑈 → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
27262rexbidv 3300 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2817, 27anbi12d 632 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ((𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
2928notbid 320 . . . . . . . . . . 11 (𝑢 = 𝑈 → (¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
30 neeq2 3079 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
31 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑥) = (𝑉 𝑥))
3231eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑉 𝑥)))
33 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑦) = (𝑉 𝑦))
3433eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑉 𝑦)))
35 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑧) = (𝑉 𝑧))
3635eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑉 𝑧)))
3732, 34, 363anbi123d 1432 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑉 → (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
3837anbi1d 631 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3938rexbidv 3297 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
40392rexbidv 3300 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4130, 40anbi12d 632 . . . . . . . . . . . 12 (𝑣 = 𝑉 → ((𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4241notbid 320 . . . . . . . . . . 11 (𝑣 = 𝑉 → (¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4329, 42rspc2v 3632 . . . . . . . . . 10 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4415, 16, 43syl2anc 586 . . . . . . . . 9 (𝜑 → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4514, 44mpd 15 . . . . . . . 8 (𝜑 → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
46 imnan 402 . . . . . . . 8 ((𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4745, 46sylibr 236 . . . . . . 7 (𝜑 → (𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
484, 47mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
49 ralnex3 3262 . . . . . 6 (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
5048, 49sylibr 236 . . . . 5 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
51 axtgupdim2.x . . . . . 6 (𝜑𝑋𝑃)
52 axtgupdim2.y . . . . . 6 (𝜑𝑌𝑃)
53 axtgupdim2.z . . . . . 6 (𝜑𝑍𝑃)
54 oveq2 7158 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑈 𝑥) = (𝑈 𝑋))
55 oveq2 7158 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑉 𝑥) = (𝑉 𝑋))
5654, 55eqeq12d 2837 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑈 𝑥) = (𝑉 𝑥) ↔ (𝑈 𝑋) = (𝑉 𝑋)))
57563anbi1d 1436 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
58 oveq1 7157 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
5958eleq2d 2898 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
60 eleq1 2900 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
61 oveq1 7157 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
6261eleq2d 2898 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
6359, 60, 623orbi123d 1431 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6463notbid 320 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6557, 64anbi12d 632 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
6665notbid 320 . . . . . . 7 (𝑥 = 𝑋 → (¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
67 oveq2 7158 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑈 𝑦) = (𝑈 𝑌))
68 oveq2 7158 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑉 𝑦) = (𝑉 𝑌))
6967, 68eqeq12d 2837 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑈 𝑦) = (𝑉 𝑦) ↔ (𝑈 𝑌) = (𝑉 𝑌)))
70693anbi2d 1437 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
71 oveq2 7158 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
7271eleq2d 2898 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
73 oveq2 7158 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
7473eleq2d 2898 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
75 eleq1 2900 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
7672, 74, 753orbi123d 1431 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7776notbid 320 . . . . . . . . 9 (𝑦 = 𝑌 → (¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7870, 77anbi12d 632 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
7978notbid 320 . . . . . . 7 (𝑦 = 𝑌 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
80 oveq2 7158 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑈 𝑧) = (𝑈 𝑍))
81 oveq2 7158 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑉 𝑧) = (𝑉 𝑍))
8280, 81eqeq12d 2837 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑈 𝑧) = (𝑉 𝑧) ↔ (𝑈 𝑍) = (𝑉 𝑍)))
83823anbi3d 1438 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍))))
84 eleq1 2900 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
85 oveq1 7157 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
8685eleq2d 2898 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
87 oveq2 7158 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
8887eleq2d 2898 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
8984, 86, 883orbi123d 1431 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9089notbid 320 . . . . . . . . 9 (𝑧 = 𝑍 → (¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9183, 90anbi12d 632 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9291notbid 320 . . . . . . 7 (𝑧 = 𝑍 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9366, 79, 92rspc3v 3635 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9451, 52, 53, 93syl3anc 1367 . . . . 5 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9550, 94mpd 15 . . . 4 (𝜑 → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
96 imnan 402 . . . 4 ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9795, 96sylibr 236 . . 3 (𝜑 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
981, 2, 3, 97mp3and 1460 . 2 (𝜑 → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
9998notnotrd 135 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139   class class class wbr 5058  cfv 6349  (class class class)co 7150  3c3 11687  Basecbs 16477  distcds 16568  DimTarskiGcstrkgld 26214  Itvcitv 26216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-trkgld 26232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator