Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgupdim2 Structured version   Visualization version   GIF version

Theorem axtgupdim2 26171
 Description: Upper dimension axiom for dimension 2, Axiom A9 of [Schwabhauser] p. 13. Three points 𝑋, 𝑌 and 𝑍 equidistant to two given two points 𝑈 and 𝑉 must be colinear. (Contributed by Thierry Arnoux, 29-May-2019.) (Revised by Thierry Arnoux, 11-Jul-2020.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgupdim2.x (𝜑𝑋𝑃)
axtgupdim2.y (𝜑𝑌𝑃)
axtgupdim2.z (𝜑𝑍𝑃)
axtgupdim2.u (𝜑𝑈𝑃)
axtgupdim2.v (𝜑𝑉𝑃)
axtgupdim2.0 (𝜑𝑈𝑉)
axtgupdim2.1 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
axtgupdim2.2 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
axtgupdim2.3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
axtgupdim2.w (𝜑𝐺𝑉)
axtgupdim2.g (𝜑 → ¬ 𝐺DimTarskiG≥3)
Assertion
Ref Expression
axtgupdim2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))

Proof of Theorem axtgupdim2
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgupdim2.1 . . 3 (𝜑 → (𝑈 𝑋) = (𝑉 𝑋))
2 axtgupdim2.2 . . 3 (𝜑 → (𝑈 𝑌) = (𝑉 𝑌))
3 axtgupdim2.3 . . 3 (𝜑 → (𝑈 𝑍) = (𝑉 𝑍))
4 axtgupdim2.0 . . . . . . 7 (𝜑𝑈𝑉)
5 axtgupdim2.g . . . . . . . . . . 11 (𝜑 → ¬ 𝐺DimTarskiG≥3)
6 axtgupdim2.w . . . . . . . . . . . 12 (𝜑𝐺𝑉)
7 axtrkge.p . . . . . . . . . . . . 13 𝑃 = (Base‘𝐺)
8 axtrkge.d . . . . . . . . . . . . 13 = (dist‘𝐺)
9 axtrkge.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
107, 8, 9istrkg3ld 26161 . . . . . . . . . . . 12 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
116, 10syl 17 . . . . . . . . . . 11 (𝜑 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
125, 11mtbid 325 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
13 ralnex2 3265 . . . . . . . . . 10 (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1412, 13sylibr 235 . . . . . . . . 9 (𝜑 → ∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 axtgupdim2.u . . . . . . . . . 10 (𝜑𝑈𝑃)
16 axtgupdim2.v . . . . . . . . . 10 (𝜑𝑉𝑃)
17 neeq1 3083 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (𝑢𝑣𝑈𝑣))
18 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑥) = (𝑈 𝑥))
1918eqeq1d 2828 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑣 𝑥)))
20 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑦) = (𝑈 𝑦))
2120eqeq1d 2828 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑣 𝑦)))
22 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑈 → (𝑢 𝑧) = (𝑈 𝑧))
2322eqeq1d 2828 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑈 → ((𝑢 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑣 𝑧)))
2419, 21, 233anbi123d 1429 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑈 → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧))))
2524anbi1d 629 . . . . . . . . . . . . . . 15 (𝑢 = 𝑈 → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2625rexbidv 3302 . . . . . . . . . . . . . 14 (𝑢 = 𝑈 → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
27262rexbidv 3305 . . . . . . . . . . . . 13 (𝑢 = 𝑈 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2817, 27anbi12d 630 . . . . . . . . . . . 12 (𝑢 = 𝑈 → ((𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
2928notbid 319 . . . . . . . . . . 11 (𝑢 = 𝑈 → (¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
30 neeq2 3084 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (𝑈𝑣𝑈𝑉))
31 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑥) = (𝑉 𝑥))
3231eqeq2d 2837 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑥) = (𝑣 𝑥) ↔ (𝑈 𝑥) = (𝑉 𝑥)))
33 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑦) = (𝑉 𝑦))
3433eqeq2d 2837 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑦) = (𝑣 𝑦) ↔ (𝑈 𝑦) = (𝑉 𝑦)))
35 oveq1 7155 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → (𝑣 𝑧) = (𝑉 𝑧))
3635eqeq2d 2837 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑉 → ((𝑈 𝑧) = (𝑣 𝑧) ↔ (𝑈 𝑧) = (𝑉 𝑧)))
3732, 34, 363anbi123d 1429 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑉 → (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ↔ ((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
3837anbi1d 629 . . . . . . . . . . . . . . 15 (𝑣 = 𝑉 → ((((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3938rexbidv 3302 . . . . . . . . . . . . . 14 (𝑣 = 𝑉 → (∃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
40392rexbidv 3305 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4130, 40anbi12d 630 . . . . . . . . . . . 12 (𝑣 = 𝑉 → ((𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4241notbid 319 . . . . . . . . . . 11 (𝑣 = 𝑉 → (¬ (𝑈𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑣 𝑥) ∧ (𝑈 𝑦) = (𝑣 𝑦) ∧ (𝑈 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4329, 42rspc2v 3637 . . . . . . . . . 10 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4415, 16, 43syl2anc 584 . . . . . . . . 9 (𝜑 → (∀𝑢𝑃𝑣𝑃 ¬ (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
4514, 44mpd 15 . . . . . . . 8 (𝜑 → ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
46 imnan 400 . . . . . . . 8 ((𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ¬ (𝑈𝑉 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
4745, 46sylibr 235 . . . . . . 7 (𝜑 → (𝑈𝑉 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
484, 47mpd 15 . . . . . 6 (𝜑 → ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
49 ralnex3 3267 . . . . . 6 (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
5048, 49sylibr 235 . . . . 5 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
51 axtgupdim2.x . . . . . 6 (𝜑𝑋𝑃)
52 axtgupdim2.y . . . . . 6 (𝜑𝑌𝑃)
53 axtgupdim2.z . . . . . 6 (𝜑𝑍𝑃)
54 oveq2 7156 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑈 𝑥) = (𝑈 𝑋))
55 oveq2 7156 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑉 𝑥) = (𝑉 𝑋))
5654, 55eqeq12d 2842 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑈 𝑥) = (𝑉 𝑥) ↔ (𝑈 𝑋) = (𝑉 𝑋)))
57563anbi1d 1433 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
58 oveq1 7155 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦))
5958eleq2d 2903 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
60 eleq1 2905 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
61 oveq1 7155 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
6261eleq2d 2903 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
6359, 60, 623orbi123d 1428 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6463notbid 319 . . . . . . . . 9 (𝑥 = 𝑋 → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
6557, 64anbi12d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
6665notbid 319 . . . . . . 7 (𝑥 = 𝑋 → (¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))))
67 oveq2 7156 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑈 𝑦) = (𝑈 𝑌))
68 oveq2 7156 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑉 𝑦) = (𝑉 𝑌))
6967, 68eqeq12d 2842 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑈 𝑦) = (𝑉 𝑦) ↔ (𝑈 𝑌) = (𝑉 𝑌)))
70693anbi2d 1434 . . . . . . . . 9 (𝑦 = 𝑌 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧))))
71 oveq2 7156 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌))
7271eleq2d 2903 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
73 oveq2 7156 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
7473eleq2d 2903 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
75 eleq1 2905 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
7672, 74, 753orbi123d 1428 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7776notbid 319 . . . . . . . . 9 (𝑦 = 𝑌 → (¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
7870, 77anbi12d 630 . . . . . . . 8 (𝑦 = 𝑌 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
7978notbid 319 . . . . . . 7 (𝑦 = 𝑌 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))))
80 oveq2 7156 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑈 𝑧) = (𝑈 𝑍))
81 oveq2 7156 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑉 𝑧) = (𝑉 𝑍))
8280, 81eqeq12d 2842 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑈 𝑧) = (𝑉 𝑧) ↔ (𝑈 𝑍) = (𝑉 𝑍)))
83823anbi3d 1435 . . . . . . . . 9 (𝑧 = 𝑍 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ↔ ((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍))))
84 eleq1 2905 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
85 oveq1 7155 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
8685eleq2d 2903 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
87 oveq2 7156 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
8887eleq2d 2903 . . . . . . . . . . 11 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
8984, 86, 883orbi123d 1428 . . . . . . . . . 10 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9089notbid 319 . . . . . . . . 9 (𝑧 = 𝑍 → (¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9183, 90anbi12d 630 . . . . . . . 8 (𝑧 = 𝑍 → ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9291notbid 319 . . . . . . 7 (𝑧 = 𝑍 → (¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9366, 79, 92rspc3v 3640 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9451, 52, 53, 93syl3anc 1365 . . . . 5 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (((𝑈 𝑥) = (𝑉 𝑥) ∧ (𝑈 𝑦) = (𝑉 𝑦) ∧ (𝑈 𝑧) = (𝑉 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
9550, 94mpd 15 . . . 4 (𝜑 → ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
96 imnan 400 . . . 4 ((((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) ↔ ¬ (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) ∧ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
9795, 96sylibr 235 . . 3 (𝜑 → (((𝑈 𝑋) = (𝑉 𝑋) ∧ (𝑈 𝑌) = (𝑉 𝑌) ∧ (𝑈 𝑍) = (𝑉 𝑍)) → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
981, 2, 3, 97mp3and 1457 . 2 (𝜑 → ¬ ¬ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
9998notnotrd 135 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ w3o 1080   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  ∃wrex 3144   class class class wbr 5063  ‘cfv 6352  (class class class)co 7148  3c3 11682  Basecbs 16473  distcds 16564  DimTarskiG≥cstrkgld 26134  Itvcitv 26136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-trkgld 26152 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator