| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexnal2 | Structured version Visualization version GIF version | ||
| Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexnal2 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexnal 3084 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 𝜑) | |
| 2 | 1 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | rexnal 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: rexnal3 3115 2nreu 4394 nf1const 7238 cat1 18004 isnsgrp 18631 nn0prpw 36363 smprngopr 38098 aks6d1c6lem3 42211 fimgmcyc 42573 clsk1independent 44085 ichnreuop 47509 |
| Copyright terms: Public domain | W3C validator |