MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexnal2 Structured version   Visualization version   GIF version

Theorem rexnal2 3123
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
rexnal2 (∃𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem rexnal2
StepHypRef Expression
1 rexnal 3090 . . 3 (∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 𝜑)
21rexbii 3084 . 2 (∃𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐵 𝜑)
3 rexnal 3090 . 2 (∃𝑥𝐴 ¬ ∀𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 275 1 (∃𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wral 3052  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3053  df-rex 3062
This theorem is referenced by:  rexnal3  3124  2nreu  4424  nf1const  7302  cat1  18115  isnsgrp  18706  nn0prpw  36346  smprngopr  38081  aks6d1c6lem3  42190  fimgmcyc  42524  clsk1independent  44037  ichnreuop  47453
  Copyright terms: Public domain W3C validator