| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 9090 eluz 12866 elicc4 13430 s111 14633 limsupgle 15493 lo1resb 15580 o1resb 15582 isercolllem2 15682 divalgmodcl 16426 ismri2 17644 acsfiel2 17667 eqglact 19162 eqgid 19163 cntzel 19306 dprdsubg 20007 subgdmdprd 20017 dprd2da 20025 dmdprdpr 20032 issubrg3 20560 ishil2 21679 obslbs 21690 iscld2 22966 isperf3 23091 cncnp2 23219 cnnei 23220 trfbas2 23781 flimrest 23921 flfnei 23929 fclsrest 23962 tsmssubm 24081 isnghm2 24663 isnghm3 24664 isnmhm2 24691 iscfil2 25218 caucfil 25235 ellimc2 25830 cnlimc 25841 lhop1 25971 dvfsumlem1 25984 fsumharmonic 26974 fsumvma 27176 fsumvma2 27177 vmasum 27179 chpchtsum 27182 chpub 27183 rpvmasum2 27475 dchrisum0lem1 27479 dirith 27492 uvtx2vtx1edg 29377 uvtx2vtx1edgb 29378 iscplgrnb 29395 frgr3v 30256 adjeu 31870 suppiniseg 32663 suppss3 32701 nndiffz1 32763 indpreima 32842 islinds5 33382 fsumcvg4 33981 qqhval2lem 34012 eulerpartlemf 34402 elorvc 34492 hashreprin 34652 neibastop3 36380 relowlpssretop 37382 sstotbnd2 37798 isbnd3b 37809 lshpkr 39135 isat2 39305 islln4 39526 islpln4 39550 islvol4 39593 islhp2 40016 pw2f1o2val2 43064 modelaxreplem3 45005 rfcnpre1 45043 rfcnpre2 45055 joindm3 48943 meetdm3 48945 catprsc 48988 |
| Copyright terms: Public domain | W3C validator |