![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: rbaibd 540 pw2f1olem 9142 eluz 12917 elicc4 13474 s111 14663 limsupgle 15523 lo1resb 15610 o1resb 15612 isercolllem2 15714 divalgmodcl 16455 ismri2 17690 acsfiel2 17713 eqglact 19219 eqgid 19220 cntzel 19363 dprdsubg 20068 subgdmdprd 20078 dprd2da 20086 dmdprdpr 20093 issubrg3 20628 ishil2 21762 obslbs 21773 iscld2 23057 isperf3 23182 cncnp2 23310 cnnei 23311 trfbas2 23872 flimrest 24012 flfnei 24020 fclsrest 24053 tsmssubm 24172 isnghm2 24766 isnghm3 24767 isnmhm2 24794 iscfil2 25319 caucfil 25336 ellimc2 25932 cnlimc 25943 lhop1 26073 dvfsumlem1 26086 fsumharmonic 27073 fsumvma 27275 fsumvma2 27276 vmasum 27278 chpchtsum 27281 chpub 27282 rpvmasum2 27574 dchrisum0lem1 27578 dirith 27591 uvtx2vtx1edg 29433 uvtx2vtx1edgb 29434 iscplgrnb 29451 frgr3v 30307 adjeu 31921 suppiniseg 32698 suppss3 32738 nndiffz1 32791 islinds5 33360 fsumcvg4 33896 qqhval2lem 33927 indpreima 33989 eulerpartlemf 34335 elorvc 34424 hashreprin 34597 neibastop3 36328 relowlpssretop 37330 sstotbnd2 37734 isbnd3b 37745 lshpkr 39073 isat2 39243 islln4 39464 islpln4 39488 islvol4 39531 islhp2 39954 pw2f1o2val2 42997 rfcnpre1 44919 rfcnpre2 44931 joindm3 48649 meetdm3 48651 catprsc 48680 |
Copyright terms: Public domain | W3C validator |