| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 9050 eluz 12814 elicc4 13381 s111 14587 limsupgle 15450 lo1resb 15537 o1resb 15539 isercolllem2 15639 divalgmodcl 16384 ismri2 17600 acsfiel2 17623 eqglact 19118 eqgid 19119 cntzel 19262 dprdsubg 19963 subgdmdprd 19973 dprd2da 19981 dmdprdpr 19988 issubrg3 20516 ishil2 21635 obslbs 21646 iscld2 22922 isperf3 23047 cncnp2 23175 cnnei 23176 trfbas2 23737 flimrest 23877 flfnei 23885 fclsrest 23918 tsmssubm 24037 isnghm2 24619 isnghm3 24620 isnmhm2 24647 iscfil2 25173 caucfil 25190 ellimc2 25785 cnlimc 25796 lhop1 25926 dvfsumlem1 25939 fsumharmonic 26929 fsumvma 27131 fsumvma2 27132 vmasum 27134 chpchtsum 27137 chpub 27138 rpvmasum2 27430 dchrisum0lem1 27434 dirith 27447 uvtx2vtx1edg 29332 uvtx2vtx1edgb 29333 iscplgrnb 29350 frgr3v 30211 adjeu 31825 suppiniseg 32616 suppss3 32654 nndiffz1 32716 indpreima 32795 islinds5 33345 fsumcvg4 33947 qqhval2lem 33978 eulerpartlemf 34368 elorvc 34458 hashreprin 34618 neibastop3 36357 relowlpssretop 37359 sstotbnd2 37775 isbnd3b 37786 lshpkr 39117 isat2 39287 islln4 39508 islpln4 39532 islvol4 39575 islhp2 39998 pw2f1o2val2 43036 modelaxreplem3 44977 rfcnpre1 45020 rfcnpre2 45032 joindm3 48961 meetdm3 48963 catprsc 49006 |
| Copyright terms: Public domain | W3C validator |