| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 9084 eluz 12858 elicc4 13420 s111 14620 limsupgle 15480 lo1resb 15567 o1resb 15569 isercolllem2 15669 divalgmodcl 16411 ismri2 17629 acsfiel2 17652 eqglact 19147 eqgid 19148 cntzel 19291 dprdsubg 19992 subgdmdprd 20002 dprd2da 20010 dmdprdpr 20017 issubrg3 20545 ishil2 21664 obslbs 21675 iscld2 22951 isperf3 23076 cncnp2 23204 cnnei 23205 trfbas2 23766 flimrest 23906 flfnei 23914 fclsrest 23947 tsmssubm 24066 isnghm2 24648 isnghm3 24649 isnmhm2 24676 iscfil2 25203 caucfil 25220 ellimc2 25815 cnlimc 25826 lhop1 25956 dvfsumlem1 25969 fsumharmonic 26958 fsumvma 27160 fsumvma2 27161 vmasum 27163 chpchtsum 27166 chpub 27167 rpvmasum2 27459 dchrisum0lem1 27463 dirith 27476 uvtx2vtx1edg 29309 uvtx2vtx1edgb 29310 iscplgrnb 29327 frgr3v 30188 adjeu 31802 suppiniseg 32596 suppss3 32636 nndiffz1 32697 indpreima 32760 islinds5 33300 fsumcvg4 33889 qqhval2lem 33920 eulerpartlemf 34310 elorvc 34400 hashreprin 34573 neibastop3 36301 relowlpssretop 37303 sstotbnd2 37719 isbnd3b 37730 lshpkr 39056 isat2 39226 islln4 39447 islpln4 39471 islvol4 39514 islhp2 39937 pw2f1o2val2 42989 modelaxreplem3 44932 rfcnpre1 44970 rfcnpre2 44982 joindm3 48822 meetdm3 48824 catprsc 48867 |
| Copyright terms: Public domain | W3C validator |