Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: rbaibd 540 pw2f1olem 8832 eluz 12578 elicc4 13128 s111 14301 limsupgle 15167 lo1resb 15254 o1resb 15256 isercolllem2 15358 divalgmodcl 16097 ismri2 17322 acsfiel2 17345 eqglact 18788 eqgid 18789 cntzel 18910 dprdsubg 19608 subgdmdprd 19618 dprd2da 19626 dmdprdpr 19633 issubrg3 20033 ishil2 20907 obslbs 20918 iscld2 22160 isperf3 22285 cncnp2 22413 cnnei 22414 trfbas2 22975 flimrest 23115 flfnei 23123 fclsrest 23156 tsmssubm 23275 isnghm2 23869 isnghm3 23870 isnmhm2 23897 iscfil2 24411 caucfil 24428 ellimc2 25022 cnlimc 25033 lhop1 25159 dvfsumlem1 25171 fsumharmonic 26142 fsumvma 26342 fsumvma2 26343 vmasum 26345 chpchtsum 26348 chpub 26349 rpvmasum2 26641 dchrisum0lem1 26645 dirith 26658 uvtx2vtx1edg 27746 uvtx2vtx1edgb 27747 iscplgrnb 27764 frgr3v 28618 adjeu 30230 suppiniseg 30999 suppss3 31038 nndiffz1 31086 islinds5 31542 fsumcvg4 31879 qqhval2lem 31910 indpreima 31972 eulerpartlemf 32316 elorvc 32405 hashreprin 32579 neibastop3 34530 relowlpssretop 35514 sstotbnd2 35911 isbnd3b 35922 lshpkr 37110 isat2 37280 islln4 37500 islpln4 37524 islvol4 37567 islhp2 37990 pw2f1o2val2 40842 rfcnpre1 42515 rfcnpre2 42527 joindm3 46215 meetdm3 46217 catprsc 46246 |
Copyright terms: Public domain | W3C validator |