| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 8998 eluz 12749 elicc4 13316 s111 14522 limsupgle 15384 lo1resb 15471 o1resb 15473 isercolllem2 15573 divalgmodcl 16318 ismri2 17538 acsfiel2 17561 eqglact 19058 eqgid 19059 cntzel 19202 dprdsubg 19905 subgdmdprd 19915 dprd2da 19923 dmdprdpr 19930 issubrg3 20485 ishil2 21626 obslbs 21637 iscld2 22913 isperf3 23038 cncnp2 23166 cnnei 23167 trfbas2 23728 flimrest 23868 flfnei 23876 fclsrest 23909 tsmssubm 24028 isnghm2 24610 isnghm3 24611 isnmhm2 24638 iscfil2 25164 caucfil 25181 ellimc2 25776 cnlimc 25787 lhop1 25917 dvfsumlem1 25930 fsumharmonic 26920 fsumvma 27122 fsumvma2 27123 vmasum 27125 chpchtsum 27128 chpub 27129 rpvmasum2 27421 dchrisum0lem1 27425 dirith 27438 uvtx2vtx1edg 29343 uvtx2vtx1edgb 29344 iscplgrnb 29361 frgr3v 30219 adjeu 31833 suppiniseg 32628 suppss3 32667 nndiffz1 32729 indpreima 32808 islinds5 33304 fsumcvg4 33917 qqhval2lem 33948 eulerpartlemf 34338 elorvc 34428 hashreprin 34588 neibastop3 36336 relowlpssretop 37338 sstotbnd2 37754 isbnd3b 37765 lshpkr 39096 isat2 39266 islln4 39486 islpln4 39510 islvol4 39553 islhp2 39976 pw2f1o2val2 43013 modelaxreplem3 44954 rfcnpre1 44997 rfcnpre2 45009 joindm3 48953 meetdm3 48955 catprsc 48998 |
| Copyright terms: Public domain | W3C validator |