| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 9045 eluz 12807 elicc4 13374 s111 14580 limsupgle 15443 lo1resb 15530 o1resb 15532 isercolllem2 15632 divalgmodcl 16377 ismri2 17593 acsfiel2 17616 eqglact 19111 eqgid 19112 cntzel 19255 dprdsubg 19956 subgdmdprd 19966 dprd2da 19974 dmdprdpr 19981 issubrg3 20509 ishil2 21628 obslbs 21639 iscld2 22915 isperf3 23040 cncnp2 23168 cnnei 23169 trfbas2 23730 flimrest 23870 flfnei 23878 fclsrest 23911 tsmssubm 24030 isnghm2 24612 isnghm3 24613 isnmhm2 24640 iscfil2 25166 caucfil 25183 ellimc2 25778 cnlimc 25789 lhop1 25919 dvfsumlem1 25932 fsumharmonic 26922 fsumvma 27124 fsumvma2 27125 vmasum 27127 chpchtsum 27130 chpub 27131 rpvmasum2 27423 dchrisum0lem1 27427 dirith 27440 uvtx2vtx1edg 29325 uvtx2vtx1edgb 29326 iscplgrnb 29343 frgr3v 30204 adjeu 31818 suppiniseg 32609 suppss3 32647 nndiffz1 32709 indpreima 32788 islinds5 33338 fsumcvg4 33940 qqhval2lem 33971 eulerpartlemf 34361 elorvc 34451 hashreprin 34611 neibastop3 36350 relowlpssretop 37352 sstotbnd2 37768 isbnd3b 37779 lshpkr 39110 isat2 39280 islln4 39501 islpln4 39525 islvol4 39568 islhp2 39991 pw2f1o2val2 43029 modelaxreplem3 44970 rfcnpre1 45013 rfcnpre2 45025 joindm3 48957 meetdm3 48959 catprsc 49002 |
| Copyright terms: Public domain | W3C validator |