| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 9022 eluz 12783 elicc4 13350 s111 14556 limsupgle 15419 lo1resb 15506 o1resb 15508 isercolllem2 15608 divalgmodcl 16353 ismri2 17569 acsfiel2 17592 eqglact 19087 eqgid 19088 cntzel 19231 dprdsubg 19932 subgdmdprd 19942 dprd2da 19950 dmdprdpr 19957 issubrg3 20485 ishil2 21604 obslbs 21615 iscld2 22891 isperf3 23016 cncnp2 23144 cnnei 23145 trfbas2 23706 flimrest 23846 flfnei 23854 fclsrest 23887 tsmssubm 24006 isnghm2 24588 isnghm3 24589 isnmhm2 24616 iscfil2 25142 caucfil 25159 ellimc2 25754 cnlimc 25765 lhop1 25895 dvfsumlem1 25908 fsumharmonic 26898 fsumvma 27100 fsumvma2 27101 vmasum 27103 chpchtsum 27106 chpub 27107 rpvmasum2 27399 dchrisum0lem1 27403 dirith 27416 uvtx2vtx1edg 29301 uvtx2vtx1edgb 29302 iscplgrnb 29319 frgr3v 30177 adjeu 31791 suppiniseg 32582 suppss3 32620 nndiffz1 32682 indpreima 32761 islinds5 33311 fsumcvg4 33913 qqhval2lem 33944 eulerpartlemf 34334 elorvc 34424 hashreprin 34584 neibastop3 36323 relowlpssretop 37325 sstotbnd2 37741 isbnd3b 37752 lshpkr 39083 isat2 39253 islln4 39474 islpln4 39498 islvol4 39541 islhp2 39964 pw2f1o2val2 43002 modelaxreplem3 44943 rfcnpre1 44986 rfcnpre2 44998 joindm3 48930 meetdm3 48932 catprsc 48975 |
| Copyright terms: Public domain | W3C validator |