| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
| 4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibd 540 pw2f1olem 8994 eluz 12746 elicc4 13313 s111 14523 limsupgle 15384 lo1resb 15471 o1resb 15473 isercolllem2 15573 divalgmodcl 16318 ismri2 17538 acsfiel2 17561 eqglact 19091 eqgid 19092 cntzel 19235 dprdsubg 19938 subgdmdprd 19948 dprd2da 19956 dmdprdpr 19963 issubrg3 20515 ishil2 21656 obslbs 21667 iscld2 22943 isperf3 23068 cncnp2 23196 cnnei 23197 trfbas2 23758 flimrest 23898 flfnei 23906 fclsrest 23939 tsmssubm 24058 isnghm2 24639 isnghm3 24640 isnmhm2 24667 iscfil2 25193 caucfil 25210 ellimc2 25805 cnlimc 25816 lhop1 25946 dvfsumlem1 25959 fsumharmonic 26949 fsumvma 27151 fsumvma2 27152 vmasum 27154 chpchtsum 27157 chpub 27158 rpvmasum2 27450 dchrisum0lem1 27454 dirith 27467 uvtx2vtx1edg 29376 uvtx2vtx1edgb 29377 iscplgrnb 29394 frgr3v 30255 adjeu 31869 suppiniseg 32667 suppss3 32706 nndiffz1 32769 indpreima 32846 islinds5 33332 fsumcvg4 33963 qqhval2lem 33994 eulerpartlemf 34383 elorvc 34473 hashreprin 34633 neibastop3 36404 relowlpssretop 37406 sstotbnd2 37822 isbnd3b 37833 lshpkr 39164 isat2 39334 islln4 39554 islpln4 39578 islvol4 39621 islhp2 40044 pw2f1o2val2 43081 modelaxreplem3 45021 rfcnpre1 45064 rfcnpre2 45076 joindm3 49008 meetdm3 49010 catprsc 49053 |
| Copyright terms: Public domain | W3C validator |