Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | ibar 530 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
4 | 1, 3 | sylan9bb 511 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: rbaibd 542 pw2f1olem 8901 eluz 12642 elicc4 13192 s111 14365 limsupgle 15231 lo1resb 15318 o1resb 15320 isercolllem2 15422 divalgmodcl 16161 ismri2 17386 acsfiel2 17409 eqglact 18852 eqgid 18853 cntzel 18974 dprdsubg 19672 subgdmdprd 19682 dprd2da 19690 dmdprdpr 19697 issubrg3 20097 ishil2 20971 obslbs 20982 iscld2 22224 isperf3 22349 cncnp2 22477 cnnei 22478 trfbas2 23039 flimrest 23179 flfnei 23187 fclsrest 23220 tsmssubm 23339 isnghm2 23933 isnghm3 23934 isnmhm2 23961 iscfil2 24475 caucfil 24492 ellimc2 25086 cnlimc 25097 lhop1 25223 dvfsumlem1 25235 fsumharmonic 26206 fsumvma 26406 fsumvma2 26407 vmasum 26409 chpchtsum 26412 chpub 26413 rpvmasum2 26705 dchrisum0lem1 26709 dirith 26722 uvtx2vtx1edg 27810 uvtx2vtx1edgb 27811 iscplgrnb 27828 frgr3v 28684 adjeu 30296 suppiniseg 31065 suppss3 31104 nndiffz1 31152 islinds5 31608 fsumcvg4 31945 qqhval2lem 31976 indpreima 32038 eulerpartlemf 32382 elorvc 32471 hashreprin 32645 neibastop3 34596 relowlpssretop 35579 sstotbnd2 35976 isbnd3b 35987 lshpkr 37173 isat2 37343 islln4 37563 islpln4 37587 islvol4 37630 islhp2 38053 pw2f1o2val2 40900 rfcnpre1 42600 rfcnpre2 42612 joindm3 46321 meetdm3 46323 catprsc 46352 |
Copyright terms: Public domain | W3C validator |