MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Visualization version   GIF version

Theorem fsumvma 26361
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma.2 (𝜑𝐴 ∈ Fin)
fsumvma.3 (𝜑𝐴 ⊆ ℕ)
fsumvma.4 (𝜑𝑃 ∈ Fin)
fsumvma.5 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
fsumvma.6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
fsumvma.7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝑘,𝐾,𝑥   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝   𝑃,𝑘,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem fsumvma
Dummy variables 𝑎 𝑧 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . . 4 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) ∈ V)
2 fveq2 6774 . . . . . . . 8 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (↑‘⟨𝑝, 𝑘⟩))
3 df-ov 7278 . . . . . . . 8 (𝑝𝑘) = (↑‘⟨𝑝, 𝑘⟩)
42, 3eqtr4di 2796 . . . . . . 7 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (𝑝𝑘))
54eqeq2d 2749 . . . . . 6 (𝑧 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝𝑘)))
65biimpa 477 . . . . 5 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝𝑘))
7 fsumvma.1 . . . . 5 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
86, 7syl 17 . . . 4 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶)
91, 8csbied 3870 . . 3 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) / 𝑥𝐵 = 𝐶)
10 fsumvma.4 . . 3 (𝜑𝑃 ∈ Fin)
11 fsumvma.2 . . . . 5 (𝜑𝐴 ∈ Fin)
1211adantr 481 . . . 4 ((𝜑𝑝𝑃) → 𝐴 ∈ Fin)
13 fsumvma.5 . . . . . . . . 9 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1413biimpd 228 . . . . . . . 8 (𝜑 → ((𝑝𝑃𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1514impl 456 . . . . . . 7 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴))
1615simprd 496 . . . . . 6 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝𝑘) ∈ 𝐴)
1716ex 413 . . . . 5 ((𝜑𝑝𝑃) → (𝑘𝐾 → (𝑝𝑘) ∈ 𝐴))
1815simpld 495 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1918simpld 495 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑝 ∈ ℙ)
2019adantrr 714 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑝 ∈ ℙ)
2118simprd 496 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑘 ∈ ℕ)
2221adantrr 714 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑘 ∈ ℕ)
2321ex 413 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝑘𝐾𝑘 ∈ ℕ))
2423ssrdv 3927 . . . . . . . . 9 ((𝜑𝑝𝑃) → 𝐾 ⊆ ℕ)
2524sselda 3921 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑧𝐾) → 𝑧 ∈ ℕ)
2625adantrl 713 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑧 ∈ ℕ)
27 eqid 2738 . . . . . . . 8 𝑝 = 𝑝
28 prmexpb 16425 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ (𝑝 = 𝑝𝑘 = 𝑧)))
2928baibd 540 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3027, 29mpan2 688 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3120, 20, 22, 26, 30syl22anc 836 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3231ex 413 . . . . 5 ((𝜑𝑝𝑃) → ((𝑘𝐾𝑧𝐾) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧)))
3317, 32dom2lem 8780 . . . 4 ((𝜑𝑝𝑃) → (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴)
34 f1fi 9106 . . . 4 ((𝐴 ∈ Fin ∧ (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴) → 𝐾 ∈ Fin)
3512, 33, 34syl2anc 584 . . 3 ((𝜑𝑝𝑃) → 𝐾 ∈ Fin)
367eleq1d 2823 . . . 4 (𝑥 = (𝑝𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fsumvma.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
3938adantr 481 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ∀𝑥𝐴 𝐵 ∈ ℂ)
4013simplbda 500 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝𝑘) ∈ 𝐴)
4136, 39, 40rspcdva 3562 . . 3 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → 𝐶 ∈ ℂ)
429, 10, 35, 41fsum2d 15483 . 2 (𝜑 → Σ𝑝𝑃 Σ𝑘𝐾 𝐶 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
43 nfcv 2907 . . . 4 𝑦𝐵
44 nfcsb1v 3857 . . . 4 𝑥𝑦 / 𝑥𝐵
45 csbeq1a 3846 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4643, 44, 45cbvsumi 15409 . . 3 Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵
47 csbeq1 3835 . . . 4 (𝑦 = (↑‘𝑧) → 𝑦 / 𝑥𝐵 = (↑‘𝑧) / 𝑥𝐵)
48 snfi 8834 . . . . . . 7 {𝑝} ∈ Fin
49 xpfi 9085 . . . . . . 7 (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin)
5048, 35, 49sylancr 587 . . . . . 6 ((𝜑𝑝𝑃) → ({𝑝} × 𝐾) ∈ Fin)
5150ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
52 iunfi 9107 . . . . 5 ((𝑃 ∈ Fin ∧ ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin) → 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
5310, 51, 52syl2anc 584 . . . 4 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
54 fvex 6787 . . . . . . 7 (↑‘𝑎) ∈ V
55542a1i 12 . . . . . 6 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V))
56 eliunxp 5746 . . . . . . . . 9 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)))
5713simprbda 499 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
58 opelxp 5625 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
5957, 58sylibr 233 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ))
60 eleq1 2826 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑎 ∈ (ℙ × ℕ) ↔ ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ)))
6159, 60syl5ibrcom 246 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → 𝑎 ∈ (ℙ × ℕ)))
6261impancom 452 . . . . . . . . . . 11 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6362expimpd 454 . . . . . . . . . 10 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6463exlimdvv 1937 . . . . . . . . 9 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6556, 64syl5bi 241 . . . . . . . 8 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6665ssrdv 3927 . . . . . . . . 9 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ⊆ (ℙ × ℕ))
6766sseld 3920 . . . . . . . 8 (𝜑 → (𝑏 𝑝𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ × ℕ)))
6865, 67anim12d 609 . . . . . . 7 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ))))
69 1st2nd2 7870 . . . . . . . . . . 11 (𝑎 ∈ (ℙ × ℕ) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
7069fveq2d 6778 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩))
71 df-ov 7278 . . . . . . . . . 10 ((1st𝑎)↑(2nd𝑎)) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩)
7270, 71eqtr4di 2796 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = ((1st𝑎)↑(2nd𝑎)))
73 1st2nd2 7870 . . . . . . . . . . 11 (𝑏 ∈ (ℙ × ℕ) → 𝑏 = ⟨(1st𝑏), (2nd𝑏)⟩)
7473fveq2d 6778 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩))
75 df-ov 7278 . . . . . . . . . 10 ((1st𝑏)↑(2nd𝑏)) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩)
7674, 75eqtr4di 2796 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = ((1st𝑏)↑(2nd𝑏)))
7772, 76eqeqan12d 2752 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏))))
78 xp1st 7863 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (1st𝑎) ∈ ℙ)
79 xp2nd 7864 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (2nd𝑎) ∈ ℕ)
8078, 79jca 512 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → ((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ))
81 xp1st 7863 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (1st𝑏) ∈ ℙ)
82 xp2nd 7864 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (2nd𝑏) ∈ ℕ)
8381, 82jca 512 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ))
84 prmexpb 16425 . . . . . . . . . 10 ((((1st𝑎) ∈ ℙ ∧ (1st𝑏) ∈ ℙ) ∧ ((2nd𝑎) ∈ ℕ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8584an4s 657 . . . . . . . . 9 ((((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ) ∧ ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8680, 83, 85syl2an 596 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
87 xpopth 7872 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏)) ↔ 𝑎 = 𝑏))
8877, 86, 873bitrd 305 . . . . . . 7 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))
8968, 88syl6 35 . . . . . 6 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)))
9055, 89dom2lem 8780 . . . . 5 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V)
91 f1f1orn 6727 . . . . 5 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
9290, 91syl 17 . . . 4 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
93 fveq2 6774 . . . . . 6 (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧))
94 eqid 2738 . . . . . 6 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))
95 fvex 6787 . . . . . 6 (↑‘𝑧) ∈ V
9693, 94, 95fvmpt 6875 . . . . 5 (𝑧 𝑝𝑃 ({𝑝} × 𝐾) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
9796adantl 482 . . . 4 ((𝜑𝑧 𝑝𝑃 ({𝑝} × 𝐾)) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
98 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (↑‘⟨𝑝, 𝑘⟩))
9998, 3eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (𝑝𝑘))
10099eleq1d 2823 . . . . . . . . . . . . . 14 (𝑎 = ⟨𝑝, 𝑘⟩ → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝𝑘) ∈ 𝐴))
10140, 100syl5ibrcom 246 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) ∈ 𝐴))
102101impancom 452 . . . . . . . . . . . 12 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → (↑‘𝑎) ∈ 𝐴))
103102expimpd 454 . . . . . . . . . . 11 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
104103exlimdvv 1937 . . . . . . . . . 10 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
10556, 104syl5bi 241 . . . . . . . . 9 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴))
106105imp 407 . . . . . . . 8 ((𝜑𝑎 𝑝𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴)
107106fmpttd 6989 . . . . . . 7 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴)
108107frnd 6608 . . . . . 6 (𝜑 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
109108sselda 3921 . . . . 5 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦𝐴)
11044nfel1 2923 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
11145eleq1d 2823 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
112110, 111rspc 3549 . . . . . 6 (𝑦𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑥𝐵 ∈ ℂ))
11338, 112mpan9 507 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
114109, 113syldan 591 . . . 4 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 / 𝑥𝐵 ∈ ℂ)
11547, 53, 92, 97, 114fsumf1o 15435 . . 3 (𝜑 → Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
11646, 115eqtrid 2790 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
117108sselda 3921 . . . 4 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥𝐴)
118117, 37syldan 591 . . 3 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ)
119 eldif 3897 . . . . 5 (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
12094, 54elrnmpti 5869 . . . . . . . . . 10 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎))
12199eqeq2d 2749 . . . . . . . . . . 11 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝𝑘)))
122121rexiunxp 5749 . . . . . . . . . 10 (∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
123120, 122bitri 274 . . . . . . . . 9 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
124 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥 = (𝑝𝑘))
125 simplr 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥𝐴)
126124, 125eqeltrrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → (𝑝𝑘) ∈ 𝐴)
12713rbaibd 541 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
128127adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
129126, 128syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
130129pm5.32da 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))))
131 ancom 461 . . . . . . . . . . . . 13 (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)))
132 ancom 461 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
133130, 131, 1323bitr4g 314 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
1341332exbidv 1927 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
135 r2ex 3232 . . . . . . . . . . 11 (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)))
136 r2ex 3232 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)))
137134, 135, 1363bitr4g 314 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
138 fsumvma.3 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
139138sselda 3921 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℕ)
140 isppw2 26264 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
141139, 140syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
142137, 141bitr4d 281 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ (Λ‘𝑥) ≠ 0))
143123, 142bitrid 282 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0))
144143necon2bbid 2987 . . . . . . 7 ((𝜑𝑥𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
145144pm5.32da 579 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))))
146 fsumvma.7 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
147146ex 413 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0))
148145, 147sylbird 259 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
149119, 148syl5bi 241 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
150149imp 407 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0)
151108, 118, 150, 11fsumss 15437 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥𝐴 𝐵)
15242, 116, 1513eqtr2rd 2785 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  csb 3832  cdif 3884  wss 3887  {csn 4561  cop 4567   ciun 4924  cmpt 5157   × cxp 5587  ran crn 5590  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Fincfn 8733  cc 10869  0cc0 10871  cn 11973  cexp 13782  Σcsu 15397  cprime 16376  Λcvma 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-vma 26247
This theorem is referenced by:  fsumvma2  26362  vmasum  26364
  Copyright terms: Public domain W3C validator