MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Visualization version   GIF version

Theorem fsumvma 25949
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma.2 (𝜑𝐴 ∈ Fin)
fsumvma.3 (𝜑𝐴 ⊆ ℕ)
fsumvma.4 (𝜑𝑃 ∈ Fin)
fsumvma.5 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
fsumvma.6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
fsumvma.7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝑘,𝐾,𝑥   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝   𝑃,𝑘,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem fsumvma
Dummy variables 𝑎 𝑧 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6689 . . . 4 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) ∈ V)
2 fveq2 6674 . . . . . . . 8 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (↑‘⟨𝑝, 𝑘⟩))
3 df-ov 7173 . . . . . . . 8 (𝑝𝑘) = (↑‘⟨𝑝, 𝑘⟩)
42, 3eqtr4di 2791 . . . . . . 7 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (𝑝𝑘))
54eqeq2d 2749 . . . . . 6 (𝑧 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝𝑘)))
65biimpa 480 . . . . 5 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝𝑘))
7 fsumvma.1 . . . . 5 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
86, 7syl 17 . . . 4 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶)
91, 8csbied 3826 . . 3 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) / 𝑥𝐵 = 𝐶)
10 fsumvma.4 . . 3 (𝜑𝑃 ∈ Fin)
11 fsumvma.2 . . . . 5 (𝜑𝐴 ∈ Fin)
1211adantr 484 . . . 4 ((𝜑𝑝𝑃) → 𝐴 ∈ Fin)
13 fsumvma.5 . . . . . . . . 9 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1413biimpd 232 . . . . . . . 8 (𝜑 → ((𝑝𝑃𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1514impl 459 . . . . . . 7 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴))
1615simprd 499 . . . . . 6 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝𝑘) ∈ 𝐴)
1716ex 416 . . . . 5 ((𝜑𝑝𝑃) → (𝑘𝐾 → (𝑝𝑘) ∈ 𝐴))
1815simpld 498 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1918simpld 498 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑝 ∈ ℙ)
2019adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑝 ∈ ℙ)
2118simprd 499 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑘 ∈ ℕ)
2221adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑘 ∈ ℕ)
2321ex 416 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝑘𝐾𝑘 ∈ ℕ))
2423ssrdv 3883 . . . . . . . . 9 ((𝜑𝑝𝑃) → 𝐾 ⊆ ℕ)
2524sselda 3877 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑧𝐾) → 𝑧 ∈ ℕ)
2625adantrl 716 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑧 ∈ ℕ)
27 eqid 2738 . . . . . . . 8 𝑝 = 𝑝
28 prmexpb 16161 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ (𝑝 = 𝑝𝑘 = 𝑧)))
2928baibd 543 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3027, 29mpan2 691 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3120, 20, 22, 26, 30syl22anc 838 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3231ex 416 . . . . 5 ((𝜑𝑝𝑃) → ((𝑘𝐾𝑧𝐾) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧)))
3317, 32dom2lem 8595 . . . 4 ((𝜑𝑝𝑃) → (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴)
34 f1fi 8884 . . . 4 ((𝐴 ∈ Fin ∧ (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴) → 𝐾 ∈ Fin)
3512, 33, 34syl2anc 587 . . 3 ((𝜑𝑝𝑃) → 𝐾 ∈ Fin)
367eleq1d 2817 . . . 4 (𝑥 = (𝑝𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fsumvma.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837ralrimiva 3096 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
3938adantr 484 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ∀𝑥𝐴 𝐵 ∈ ℂ)
4013simplbda 503 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝𝑘) ∈ 𝐴)
4136, 39, 40rspcdva 3528 . . 3 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → 𝐶 ∈ ℂ)
429, 10, 35, 41fsum2d 15219 . 2 (𝜑 → Σ𝑝𝑃 Σ𝑘𝐾 𝐶 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
43 nfcv 2899 . . . 4 𝑦𝐵
44 nfcsb1v 3814 . . . 4 𝑥𝑦 / 𝑥𝐵
45 csbeq1a 3804 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4643, 44, 45cbvsumi 15147 . . 3 Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵
47 csbeq1 3793 . . . 4 (𝑦 = (↑‘𝑧) → 𝑦 / 𝑥𝐵 = (↑‘𝑧) / 𝑥𝐵)
48 snfi 8642 . . . . . . 7 {𝑝} ∈ Fin
49 xpfi 8863 . . . . . . 7 (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin)
5048, 35, 49sylancr 590 . . . . . 6 ((𝜑𝑝𝑃) → ({𝑝} × 𝐾) ∈ Fin)
5150ralrimiva 3096 . . . . 5 (𝜑 → ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
52 iunfi 8885 . . . . 5 ((𝑃 ∈ Fin ∧ ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin) → 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
5310, 51, 52syl2anc 587 . . . 4 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
54 fvex 6687 . . . . . . 7 (↑‘𝑎) ∈ V
55542a1i 12 . . . . . 6 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V))
56 eliunxp 5680 . . . . . . . . 9 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)))
5713simprbda 502 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
58 opelxp 5561 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
5957, 58sylibr 237 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ))
60 eleq1 2820 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑎 ∈ (ℙ × ℕ) ↔ ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ)))
6159, 60syl5ibrcom 250 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → 𝑎 ∈ (ℙ × ℕ)))
6261impancom 455 . . . . . . . . . . 11 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6362expimpd 457 . . . . . . . . . 10 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6463exlimdvv 1941 . . . . . . . . 9 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6556, 64syl5bi 245 . . . . . . . 8 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6665ssrdv 3883 . . . . . . . . 9 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ⊆ (ℙ × ℕ))
6766sseld 3876 . . . . . . . 8 (𝜑 → (𝑏 𝑝𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ × ℕ)))
6865, 67anim12d 612 . . . . . . 7 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ))))
69 1st2nd2 7753 . . . . . . . . . . 11 (𝑎 ∈ (ℙ × ℕ) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
7069fveq2d 6678 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩))
71 df-ov 7173 . . . . . . . . . 10 ((1st𝑎)↑(2nd𝑎)) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩)
7270, 71eqtr4di 2791 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = ((1st𝑎)↑(2nd𝑎)))
73 1st2nd2 7753 . . . . . . . . . . 11 (𝑏 ∈ (ℙ × ℕ) → 𝑏 = ⟨(1st𝑏), (2nd𝑏)⟩)
7473fveq2d 6678 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩))
75 df-ov 7173 . . . . . . . . . 10 ((1st𝑏)↑(2nd𝑏)) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩)
7674, 75eqtr4di 2791 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = ((1st𝑏)↑(2nd𝑏)))
7772, 76eqeqan12d 2755 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏))))
78 xp1st 7746 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (1st𝑎) ∈ ℙ)
79 xp2nd 7747 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (2nd𝑎) ∈ ℕ)
8078, 79jca 515 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → ((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ))
81 xp1st 7746 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (1st𝑏) ∈ ℙ)
82 xp2nd 7747 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (2nd𝑏) ∈ ℕ)
8381, 82jca 515 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ))
84 prmexpb 16161 . . . . . . . . . 10 ((((1st𝑎) ∈ ℙ ∧ (1st𝑏) ∈ ℙ) ∧ ((2nd𝑎) ∈ ℕ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8584an4s 660 . . . . . . . . 9 ((((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ) ∧ ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8680, 83, 85syl2an 599 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
87 xpopth 7755 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏)) ↔ 𝑎 = 𝑏))
8877, 86, 873bitrd 308 . . . . . . 7 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))
8968, 88syl6 35 . . . . . 6 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)))
9055, 89dom2lem 8595 . . . . 5 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V)
91 f1f1orn 6629 . . . . 5 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
9290, 91syl 17 . . . 4 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
93 fveq2 6674 . . . . . 6 (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧))
94 eqid 2738 . . . . . 6 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))
95 fvex 6687 . . . . . 6 (↑‘𝑧) ∈ V
9693, 94, 95fvmpt 6775 . . . . 5 (𝑧 𝑝𝑃 ({𝑝} × 𝐾) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
9796adantl 485 . . . 4 ((𝜑𝑧 𝑝𝑃 ({𝑝} × 𝐾)) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
98 fveq2 6674 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (↑‘⟨𝑝, 𝑘⟩))
9998, 3eqtr4di 2791 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (𝑝𝑘))
10099eleq1d 2817 . . . . . . . . . . . . . 14 (𝑎 = ⟨𝑝, 𝑘⟩ → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝𝑘) ∈ 𝐴))
10140, 100syl5ibrcom 250 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) ∈ 𝐴))
102101impancom 455 . . . . . . . . . . . 12 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → (↑‘𝑎) ∈ 𝐴))
103102expimpd 457 . . . . . . . . . . 11 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
104103exlimdvv 1941 . . . . . . . . . 10 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
10556, 104syl5bi 245 . . . . . . . . 9 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴))
106105imp 410 . . . . . . . 8 ((𝜑𝑎 𝑝𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴)
107106fmpttd 6889 . . . . . . 7 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴)
108107frnd 6512 . . . . . 6 (𝜑 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
109108sselda 3877 . . . . 5 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦𝐴)
11044nfel1 2915 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
11145eleq1d 2817 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
112110, 111rspc 3514 . . . . . 6 (𝑦𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑥𝐵 ∈ ℂ))
11338, 112mpan9 510 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
114109, 113syldan 594 . . . 4 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 / 𝑥𝐵 ∈ ℂ)
11547, 53, 92, 97, 114fsumf1o 15173 . . 3 (𝜑 → Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
11646, 115syl5eq 2785 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
117108sselda 3877 . . . 4 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥𝐴)
118117, 37syldan 594 . . 3 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ)
119 eldif 3853 . . . . 5 (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
12094, 54elrnmpti 5803 . . . . . . . . . 10 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎))
12199eqeq2d 2749 . . . . . . . . . . 11 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝𝑘)))
122121rexiunxp 5683 . . . . . . . . . 10 (∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
123120, 122bitri 278 . . . . . . . . 9 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
124 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥 = (𝑝𝑘))
125 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥𝐴)
126124, 125eqeltrrd 2834 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → (𝑝𝑘) ∈ 𝐴)
12713rbaibd 544 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
128127adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
129126, 128syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
130129pm5.32da 582 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))))
131 ancom 464 . . . . . . . . . . . . 13 (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)))
132 ancom 464 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
133130, 131, 1323bitr4g 317 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
1341332exbidv 1931 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
135 r2ex 3213 . . . . . . . . . . 11 (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)))
136 r2ex 3213 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)))
137134, 135, 1363bitr4g 317 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
138 fsumvma.3 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
139138sselda 3877 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℕ)
140 isppw2 25852 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
141139, 140syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
142137, 141bitr4d 285 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ (Λ‘𝑥) ≠ 0))
143123, 142syl5bb 286 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0))
144143necon2bbid 2977 . . . . . . 7 ((𝜑𝑥𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
145144pm5.32da 582 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))))
146 fsumvma.7 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
147146ex 416 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0))
148145, 147sylbird 263 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
149119, 148syl5bi 245 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
150149imp 410 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0)
151108, 118, 150, 11fsumss 15175 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥𝐴 𝐵)
15242, 116, 1513eqtr2rd 2780 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  wne 2934  wral 3053  wrex 3054  Vcvv 3398  csb 3790  cdif 3840  wss 3843  {csn 4516  cop 4522   ciun 4881  cmpt 5110   × cxp 5523  ran crn 5526  1-1wf1 6336  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7170  1st c1st 7712  2nd c2nd 7713  Fincfn 8555  cc 10613  0cc0 10615  cn 11716  cexp 13521  Σcsu 15135  cprime 16112  Λcvma 25829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-pi 15518  df-dvds 15700  df-gcd 15938  df-prm 16113  df-pc 16274  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-log 25300  df-vma 25835
This theorem is referenced by:  fsumvma2  25950  vmasum  25952
  Copyright terms: Public domain W3C validator