MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Visualization version   GIF version

Theorem fsumvma 27271
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma.2 (𝜑𝐴 ∈ Fin)
fsumvma.3 (𝜑𝐴 ⊆ ℕ)
fsumvma.4 (𝜑𝑃 ∈ Fin)
fsumvma.5 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
fsumvma.6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
fsumvma.7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝑘,𝐾,𝑥   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝   𝑃,𝑘,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem fsumvma
Dummy variables 𝑎 𝑧 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6921 . . . 4 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) ∈ V)
2 fveq2 6906 . . . . . . . 8 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (↑‘⟨𝑝, 𝑘⟩))
3 df-ov 7433 . . . . . . . 8 (𝑝𝑘) = (↑‘⟨𝑝, 𝑘⟩)
42, 3eqtr4di 2792 . . . . . . 7 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (𝑝𝑘))
54eqeq2d 2745 . . . . . 6 (𝑧 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝𝑘)))
65biimpa 476 . . . . 5 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝𝑘))
7 fsumvma.1 . . . . 5 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
86, 7syl 17 . . . 4 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶)
91, 8csbied 3945 . . 3 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) / 𝑥𝐵 = 𝐶)
10 fsumvma.4 . . 3 (𝜑𝑃 ∈ Fin)
11 fsumvma.2 . . . . 5 (𝜑𝐴 ∈ Fin)
1211adantr 480 . . . 4 ((𝜑𝑝𝑃) → 𝐴 ∈ Fin)
13 fsumvma.5 . . . . . . . . 9 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1413biimpd 229 . . . . . . . 8 (𝜑 → ((𝑝𝑃𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1514impl 455 . . . . . . 7 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴))
1615simprd 495 . . . . . 6 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝𝑘) ∈ 𝐴)
1716ex 412 . . . . 5 ((𝜑𝑝𝑃) → (𝑘𝐾 → (𝑝𝑘) ∈ 𝐴))
1815simpld 494 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1918simpld 494 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑝 ∈ ℙ)
2019adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑝 ∈ ℙ)
2118simprd 495 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑘 ∈ ℕ)
2221adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑘 ∈ ℕ)
2321ex 412 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝑘𝐾𝑘 ∈ ℕ))
2423ssrdv 4000 . . . . . . . . 9 ((𝜑𝑝𝑃) → 𝐾 ⊆ ℕ)
2524sselda 3994 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑧𝐾) → 𝑧 ∈ ℕ)
2625adantrl 716 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑧 ∈ ℕ)
27 eqid 2734 . . . . . . . 8 𝑝 = 𝑝
28 prmexpb 16752 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ (𝑝 = 𝑝𝑘 = 𝑧)))
2928baibd 539 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3027, 29mpan2 691 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3120, 20, 22, 26, 30syl22anc 839 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3231ex 412 . . . . 5 ((𝜑𝑝𝑃) → ((𝑘𝐾𝑧𝐾) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧)))
3317, 32dom2lem 9030 . . . 4 ((𝜑𝑝𝑃) → (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴)
34 f1fi 9349 . . . 4 ((𝐴 ∈ Fin ∧ (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴) → 𝐾 ∈ Fin)
3512, 33, 34syl2anc 584 . . 3 ((𝜑𝑝𝑃) → 𝐾 ∈ Fin)
367eleq1d 2823 . . . 4 (𝑥 = (𝑝𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fsumvma.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
3938adantr 480 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ∀𝑥𝐴 𝐵 ∈ ℂ)
4013simplbda 499 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝𝑘) ∈ 𝐴)
4136, 39, 40rspcdva 3622 . . 3 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → 𝐶 ∈ ℂ)
429, 10, 35, 41fsum2d 15803 . 2 (𝜑 → Σ𝑝𝑃 Σ𝑘𝐾 𝐶 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
43 csbeq1a 3921 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
44 nfcv 2902 . . . 4 𝑦𝐵
45 nfcsb1v 3932 . . . 4 𝑥𝑦 / 𝑥𝐵
4643, 44, 45cbvsum 15727 . . 3 Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵
47 csbeq1 3910 . . . 4 (𝑦 = (↑‘𝑧) → 𝑦 / 𝑥𝐵 = (↑‘𝑧) / 𝑥𝐵)
48 snfi 9081 . . . . . . 7 {𝑝} ∈ Fin
49 xpfi 9355 . . . . . . 7 (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin)
5048, 35, 49sylancr 587 . . . . . 6 ((𝜑𝑝𝑃) → ({𝑝} × 𝐾) ∈ Fin)
5150ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
52 iunfi 9380 . . . . 5 ((𝑃 ∈ Fin ∧ ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin) → 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
5310, 51, 52syl2anc 584 . . . 4 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
54 fvex 6919 . . . . . . 7 (↑‘𝑎) ∈ V
55542a1i 12 . . . . . 6 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V))
56 eliunxp 5850 . . . . . . . . 9 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)))
5713simprbda 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
58 opelxp 5724 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
5957, 58sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ))
60 eleq1 2826 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑎 ∈ (ℙ × ℕ) ↔ ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ)))
6159, 60syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → 𝑎 ∈ (ℙ × ℕ)))
6261impancom 451 . . . . . . . . . . 11 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6362expimpd 453 . . . . . . . . . 10 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6463exlimdvv 1931 . . . . . . . . 9 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6556, 64biimtrid 242 . . . . . . . 8 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6665ssrdv 4000 . . . . . . . . 9 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ⊆ (ℙ × ℕ))
6766sseld 3993 . . . . . . . 8 (𝜑 → (𝑏 𝑝𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ × ℕ)))
6865, 67anim12d 609 . . . . . . 7 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ))))
69 1st2nd2 8051 . . . . . . . . . . 11 (𝑎 ∈ (ℙ × ℕ) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
7069fveq2d 6910 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩))
71 df-ov 7433 . . . . . . . . . 10 ((1st𝑎)↑(2nd𝑎)) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩)
7270, 71eqtr4di 2792 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = ((1st𝑎)↑(2nd𝑎)))
73 1st2nd2 8051 . . . . . . . . . . 11 (𝑏 ∈ (ℙ × ℕ) → 𝑏 = ⟨(1st𝑏), (2nd𝑏)⟩)
7473fveq2d 6910 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩))
75 df-ov 7433 . . . . . . . . . 10 ((1st𝑏)↑(2nd𝑏)) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩)
7674, 75eqtr4di 2792 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = ((1st𝑏)↑(2nd𝑏)))
7772, 76eqeqan12d 2748 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏))))
78 xp1st 8044 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (1st𝑎) ∈ ℙ)
79 xp2nd 8045 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (2nd𝑎) ∈ ℕ)
8078, 79jca 511 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → ((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ))
81 xp1st 8044 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (1st𝑏) ∈ ℙ)
82 xp2nd 8045 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (2nd𝑏) ∈ ℕ)
8381, 82jca 511 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ))
84 prmexpb 16752 . . . . . . . . . 10 ((((1st𝑎) ∈ ℙ ∧ (1st𝑏) ∈ ℙ) ∧ ((2nd𝑎) ∈ ℕ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8584an4s 660 . . . . . . . . 9 ((((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ) ∧ ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8680, 83, 85syl2an 596 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
87 xpopth 8053 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏)) ↔ 𝑎 = 𝑏))
8877, 86, 873bitrd 305 . . . . . . 7 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))
8968, 88syl6 35 . . . . . 6 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)))
9055, 89dom2lem 9030 . . . . 5 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V)
91 f1f1orn 6859 . . . . 5 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
9290, 91syl 17 . . . 4 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
93 fveq2 6906 . . . . . 6 (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧))
94 eqid 2734 . . . . . 6 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))
95 fvex 6919 . . . . . 6 (↑‘𝑧) ∈ V
9693, 94, 95fvmpt 7015 . . . . 5 (𝑧 𝑝𝑃 ({𝑝} × 𝐾) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
9796adantl 481 . . . 4 ((𝜑𝑧 𝑝𝑃 ({𝑝} × 𝐾)) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
98 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (↑‘⟨𝑝, 𝑘⟩))
9998, 3eqtr4di 2792 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (𝑝𝑘))
10099eleq1d 2823 . . . . . . . . . . . . . 14 (𝑎 = ⟨𝑝, 𝑘⟩ → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝𝑘) ∈ 𝐴))
10140, 100syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) ∈ 𝐴))
102101impancom 451 . . . . . . . . . . . 12 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → (↑‘𝑎) ∈ 𝐴))
103102expimpd 453 . . . . . . . . . . 11 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
104103exlimdvv 1931 . . . . . . . . . 10 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
10556, 104biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴))
106105imp 406 . . . . . . . 8 ((𝜑𝑎 𝑝𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴)
107106fmpttd 7134 . . . . . . 7 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴)
108107frnd 6744 . . . . . 6 (𝜑 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
109108sselda 3994 . . . . 5 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦𝐴)
11045nfel1 2919 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
11143eleq1d 2823 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
112110, 111rspc 3609 . . . . . 6 (𝑦𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑥𝐵 ∈ ℂ))
11338, 112mpan9 506 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
114109, 113syldan 591 . . . 4 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 / 𝑥𝐵 ∈ ℂ)
11547, 53, 92, 97, 114fsumf1o 15755 . . 3 (𝜑 → Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
11646, 115eqtrid 2786 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
117108sselda 3994 . . . 4 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥𝐴)
118117, 37syldan 591 . . 3 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ)
119 eldif 3972 . . . . 5 (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
12094, 54elrnmpti 5975 . . . . . . . . . 10 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎))
12199eqeq2d 2745 . . . . . . . . . . 11 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝𝑘)))
122121rexiunxp 5853 . . . . . . . . . 10 (∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
123120, 122bitri 275 . . . . . . . . 9 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
124 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥 = (𝑝𝑘))
125 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥𝐴)
126124, 125eqeltrrd 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → (𝑝𝑘) ∈ 𝐴)
12713rbaibd 540 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
128127adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
129126, 128syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
130129pm5.32da 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))))
131 ancom 460 . . . . . . . . . . . . 13 (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)))
132 ancom 460 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
133130, 131, 1323bitr4g 314 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
1341332exbidv 1921 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
135 r2ex 3193 . . . . . . . . . . 11 (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)))
136 r2ex 3193 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)))
137134, 135, 1363bitr4g 314 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
138 fsumvma.3 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
139138sselda 3994 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℕ)
140 isppw2 27172 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
141139, 140syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
142137, 141bitr4d 282 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ (Λ‘𝑥) ≠ 0))
143123, 142bitrid 283 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0))
144143necon2bbid 2981 . . . . . . 7 ((𝜑𝑥𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
145144pm5.32da 579 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))))
146 fsumvma.7 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
147146ex 412 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0))
148145, 147sylbird 260 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
149119, 148biimtrid 242 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
150149imp 406 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0)
151108, 118, 150, 11fsumss 15757 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥𝐴 𝐵)
15242, 116, 1513eqtr2rd 2781 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  csb 3907  cdif 3959  wss 3962  {csn 4630  cop 4636   ciun 4995  cmpt 5230   × cxp 5686  ran crn 5689  1-1wf1 6559  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  Fincfn 8983  cc 11150  0cc0 11152  cn 12263  cexp 14098  Σcsu 15718  cprime 16704  Λcvma 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-vma 27155
This theorem is referenced by:  fsumvma2  27272  vmasum  27274
  Copyright terms: Public domain W3C validator