MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma Structured version   Visualization version   GIF version

Theorem fsumvma 27131
Description: Rewrite a sum over the von Mangoldt function as a sum over prime powers. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
fsumvma.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma.2 (𝜑𝐴 ∈ Fin)
fsumvma.3 (𝜑𝐴 ⊆ ℕ)
fsumvma.4 (𝜑𝑃 ∈ Fin)
fsumvma.5 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
fsumvma.6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
fsumvma.7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝑘,𝐾,𝑥   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝   𝑃,𝑘,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem fsumvma
Dummy variables 𝑎 𝑧 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . . 4 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) ∈ V)
2 fveq2 6861 . . . . . . . 8 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (↑‘⟨𝑝, 𝑘⟩))
3 df-ov 7393 . . . . . . . 8 (𝑝𝑘) = (↑‘⟨𝑝, 𝑘⟩)
42, 3eqtr4di 2783 . . . . . . 7 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) = (𝑝𝑘))
54eqeq2d 2741 . . . . . 6 (𝑧 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝𝑘)))
65biimpa 476 . . . . 5 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝𝑘))
7 fsumvma.1 . . . . 5 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
86, 7syl 17 . . . 4 ((𝑧 = ⟨𝑝, 𝑘⟩ ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶)
91, 8csbied 3901 . . 3 (𝑧 = ⟨𝑝, 𝑘⟩ → (↑‘𝑧) / 𝑥𝐵 = 𝐶)
10 fsumvma.4 . . 3 (𝜑𝑃 ∈ Fin)
11 fsumvma.2 . . . . 5 (𝜑𝐴 ∈ Fin)
1211adantr 480 . . . 4 ((𝜑𝑝𝑃) → 𝐴 ∈ Fin)
13 fsumvma.5 . . . . . . . . 9 (𝜑 → ((𝑝𝑃𝑘𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1413biimpd 229 . . . . . . . 8 (𝜑 → ((𝑝𝑃𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴)))
1514impl 455 . . . . . . 7 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ 𝐴))
1615simprd 495 . . . . . 6 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝𝑘) ∈ 𝐴)
1716ex 412 . . . . 5 ((𝜑𝑝𝑃) → (𝑘𝐾 → (𝑝𝑘) ∈ 𝐴))
1815simpld 494 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1918simpld 494 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑝 ∈ ℙ)
2019adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑝 ∈ ℙ)
2118simprd 495 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑘𝐾) → 𝑘 ∈ ℕ)
2221adantrr 717 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑘 ∈ ℕ)
2321ex 412 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝑘𝐾𝑘 ∈ ℕ))
2423ssrdv 3955 . . . . . . . . 9 ((𝜑𝑝𝑃) → 𝐾 ⊆ ℕ)
2524sselda 3949 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ 𝑧𝐾) → 𝑧 ∈ ℕ)
2625adantrl 716 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → 𝑧 ∈ ℕ)
27 eqid 2730 . . . . . . . 8 𝑝 = 𝑝
28 prmexpb 16696 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ (𝑝 = 𝑝𝑘 = 𝑧)))
2928baibd 539 . . . . . . . 8 ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3027, 29mpan2 691 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3120, 20, 22, 26, 30syl22anc 838 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑘𝐾𝑧𝐾)) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧))
3231ex 412 . . . . 5 ((𝜑𝑝𝑃) → ((𝑘𝐾𝑧𝐾) → ((𝑝𝑘) = (𝑝𝑧) ↔ 𝑘 = 𝑧)))
3317, 32dom2lem 8966 . . . 4 ((𝜑𝑝𝑃) → (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴)
34 f1fi 9270 . . . 4 ((𝐴 ∈ Fin ∧ (𝑘𝐾 ↦ (𝑝𝑘)):𝐾1-1𝐴) → 𝐾 ∈ Fin)
3512, 33, 34syl2anc 584 . . 3 ((𝜑𝑝𝑃) → 𝐾 ∈ Fin)
367eleq1d 2814 . . . 4 (𝑥 = (𝑝𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fsumvma.6 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3837ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
3938adantr 480 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ∀𝑥𝐴 𝐵 ∈ ℂ)
4013simplbda 499 . . . 4 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝𝑘) ∈ 𝐴)
4136, 39, 40rspcdva 3592 . . 3 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → 𝐶 ∈ ℂ)
429, 10, 35, 41fsum2d 15744 . 2 (𝜑 → Σ𝑝𝑃 Σ𝑘𝐾 𝐶 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
43 csbeq1a 3879 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
44 nfcv 2892 . . . 4 𝑦𝐵
45 nfcsb1v 3889 . . . 4 𝑥𝑦 / 𝑥𝐵
4643, 44, 45cbvsum 15668 . . 3 Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵
47 csbeq1 3868 . . . 4 (𝑦 = (↑‘𝑧) → 𝑦 / 𝑥𝐵 = (↑‘𝑧) / 𝑥𝐵)
48 snfi 9017 . . . . . . 7 {𝑝} ∈ Fin
49 xpfi 9276 . . . . . . 7 (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin)
5048, 35, 49sylancr 587 . . . . . 6 ((𝜑𝑝𝑃) → ({𝑝} × 𝐾) ∈ Fin)
5150ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
52 iunfi 9301 . . . . 5 ((𝑃 ∈ Fin ∧ ∀𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin) → 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
5310, 51, 52syl2anc 584 . . . 4 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ∈ Fin)
54 fvex 6874 . . . . . . 7 (↑‘𝑎) ∈ V
55542a1i 12 . . . . . 6 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V))
56 eliunxp 5804 . . . . . . . . 9 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)))
5713simprbda 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
58 opelxp 5677 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
5957, 58sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ))
60 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑎 ∈ (ℙ × ℕ) ↔ ⟨𝑝, 𝑘⟩ ∈ (ℙ × ℕ)))
6159, 60syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → 𝑎 ∈ (ℙ × ℕ)))
6261impancom 451 . . . . . . . . . . 11 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6362expimpd 453 . . . . . . . . . 10 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6463exlimdvv 1934 . . . . . . . . 9 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → 𝑎 ∈ (ℙ × ℕ)))
6556, 64biimtrid 242 . . . . . . . 8 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ × ℕ)))
6665ssrdv 3955 . . . . . . . . 9 (𝜑 𝑝𝑃 ({𝑝} × 𝐾) ⊆ (ℙ × ℕ))
6766sseld 3948 . . . . . . . 8 (𝜑 → (𝑏 𝑝𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ × ℕ)))
6865, 67anim12d 609 . . . . . . 7 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ))))
69 1st2nd2 8010 . . . . . . . . . . 11 (𝑎 ∈ (ℙ × ℕ) → 𝑎 = ⟨(1st𝑎), (2nd𝑎)⟩)
7069fveq2d 6865 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩))
71 df-ov 7393 . . . . . . . . . 10 ((1st𝑎)↑(2nd𝑎)) = (↑‘⟨(1st𝑎), (2nd𝑎)⟩)
7270, 71eqtr4di 2783 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → (↑‘𝑎) = ((1st𝑎)↑(2nd𝑎)))
73 1st2nd2 8010 . . . . . . . . . . 11 (𝑏 ∈ (ℙ × ℕ) → 𝑏 = ⟨(1st𝑏), (2nd𝑏)⟩)
7473fveq2d 6865 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩))
75 df-ov 7393 . . . . . . . . . 10 ((1st𝑏)↑(2nd𝑏)) = (↑‘⟨(1st𝑏), (2nd𝑏)⟩)
7674, 75eqtr4di 2783 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → (↑‘𝑏) = ((1st𝑏)↑(2nd𝑏)))
7772, 76eqeqan12d 2744 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏))))
78 xp1st 8003 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (1st𝑎) ∈ ℙ)
79 xp2nd 8004 . . . . . . . . . 10 (𝑎 ∈ (ℙ × ℕ) → (2nd𝑎) ∈ ℕ)
8078, 79jca 511 . . . . . . . . 9 (𝑎 ∈ (ℙ × ℕ) → ((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ))
81 xp1st 8003 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (1st𝑏) ∈ ℙ)
82 xp2nd 8004 . . . . . . . . . 10 (𝑏 ∈ (ℙ × ℕ) → (2nd𝑏) ∈ ℕ)
8381, 82jca 511 . . . . . . . . 9 (𝑏 ∈ (ℙ × ℕ) → ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ))
84 prmexpb 16696 . . . . . . . . . 10 ((((1st𝑎) ∈ ℙ ∧ (1st𝑏) ∈ ℙ) ∧ ((2nd𝑎) ∈ ℕ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8584an4s 660 . . . . . . . . 9 ((((1st𝑎) ∈ ℙ ∧ (2nd𝑎) ∈ ℕ) ∧ ((1st𝑏) ∈ ℙ ∧ (2nd𝑏) ∈ ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
8680, 83, 85syl2an 596 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎)↑(2nd𝑎)) = ((1st𝑏)↑(2nd𝑏)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏))))
87 xpopth 8012 . . . . . . . 8 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) = (2nd𝑏)) ↔ 𝑎 = 𝑏))
8877, 86, 873bitrd 305 . . . . . . 7 ((𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))
8968, 88syl6 35 . . . . . 6 (𝜑 → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ∧ 𝑏 𝑝𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)))
9055, 89dom2lem 8966 . . . . 5 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V)
91 f1f1orn 6814 . . . . 5 ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
9290, 91syl 17 . . . 4 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)–1-1-onto→ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))
93 fveq2 6861 . . . . . 6 (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧))
94 eqid 2730 . . . . . 6 (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))
95 fvex 6874 . . . . . 6 (↑‘𝑧) ∈ V
9693, 94, 95fvmpt 6971 . . . . 5 (𝑧 𝑝𝑃 ({𝑝} × 𝐾) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
9796adantl 481 . . . 4 ((𝜑𝑧 𝑝𝑃 ({𝑝} × 𝐾)) → ((𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧))
98 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (↑‘⟨𝑝, 𝑘⟩))
9998, 3eqtr4di 2783 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) = (𝑝𝑘))
10099eleq1d 2814 . . . . . . . . . . . . . 14 (𝑎 = ⟨𝑝, 𝑘⟩ → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝𝑘) ∈ 𝐴))
10140, 100syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑃𝑘𝐾)) → (𝑎 = ⟨𝑝, 𝑘⟩ → (↑‘𝑎) ∈ 𝐴))
102101impancom 451 . . . . . . . . . . . 12 ((𝜑𝑎 = ⟨𝑝, 𝑘⟩) → ((𝑝𝑃𝑘𝐾) → (↑‘𝑎) ∈ 𝐴))
103102expimpd 453 . . . . . . . . . . 11 (𝜑 → ((𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
104103exlimdvv 1934 . . . . . . . . . 10 (𝜑 → (∃𝑝𝑘(𝑎 = ⟨𝑝, 𝑘⟩ ∧ (𝑝𝑃𝑘𝐾)) → (↑‘𝑎) ∈ 𝐴))
10556, 104biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴))
106105imp 406 . . . . . . . 8 ((𝜑𝑎 𝑝𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴)
107106fmpttd 7090 . . . . . . 7 (𝜑 → (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)): 𝑝𝑃 ({𝑝} × 𝐾)⟶𝐴)
108107frnd 6699 . . . . . 6 (𝜑 → ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴)
109108sselda 3949 . . . . 5 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦𝐴)
11045nfel1 2909 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
11143eleq1d 2814 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
112110, 111rspc 3579 . . . . . 6 (𝑦𝐴 → (∀𝑥𝐴 𝐵 ∈ ℂ → 𝑦 / 𝑥𝐵 ∈ ℂ))
11338, 112mpan9 506 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
114109, 113syldan 591 . . . 4 ((𝜑𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 / 𝑥𝐵 ∈ ℂ)
11547, 53, 92, 97, 114fsumf1o 15696 . . 3 (𝜑 → Σ𝑦 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝑦 / 𝑥𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
11646, 115eqtrid 2777 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 𝑝𝑃 ({𝑝} × 𝐾)(↑‘𝑧) / 𝑥𝐵)
117108sselda 3949 . . . 4 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥𝐴)
118117, 37syldan 591 . . 3 ((𝜑𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ)
119 eldif 3927 . . . . 5 (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
12094, 54elrnmpti 5929 . . . . . . . . . 10 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎))
12199eqeq2d 2741 . . . . . . . . . . 11 (𝑎 = ⟨𝑝, 𝑘⟩ → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝𝑘)))
122121rexiunxp 5807 . . . . . . . . . 10 (∃𝑎 𝑝𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
123120, 122bitri 275 . . . . . . . . 9 (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘))
124 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥 = (𝑝𝑘))
125 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → 𝑥𝐴)
126124, 125eqeltrrd 2830 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → (𝑝𝑘) ∈ 𝐴)
12713rbaibd 540 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
128127adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑝𝑘) ∈ 𝐴) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
129126, 128syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑥 = (𝑝𝑘)) → ((𝑝𝑃𝑘𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
130129pm5.32da 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))))
131 ancom 460 . . . . . . . . . . . . 13 (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝𝑃𝑘𝐾)))
132 ancom 460 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)) ↔ (𝑥 = (𝑝𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))
133130, 131, 1323bitr4g 314 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
1341332exbidv 1924 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘))))
135 r2ex 3175 . . . . . . . . . . 11 (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝𝑃𝑘𝐾) ∧ 𝑥 = (𝑝𝑘)))
136 r2ex 3175 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘) ↔ ∃𝑝𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝𝑘)))
137134, 135, 1363bitr4g 314 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
138 fsumvma.3 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
139138sselda 3949 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥 ∈ ℕ)
140 isppw2 27032 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
141139, 140syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝𝑘)))
142137, 141bitr4d 282 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∃𝑝𝑃𝑘𝐾 𝑥 = (𝑝𝑘) ↔ (Λ‘𝑥) ≠ 0))
143123, 142bitrid 283 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0))
144143necon2bbid 2969 . . . . . . 7 ((𝜑𝑥𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))
145144pm5.32da 579 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))))
146 fsumvma.7 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
147146ex 412 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0))
148145, 147sylbird 260 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
149119, 148biimtrid 242 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0))
150149imp 406 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0)
151108, 118, 150, 11fsumss 15698 . 2 (𝜑 → Σ𝑥 ∈ ran (𝑎 𝑝𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥𝐴 𝐵)
15242, 116, 1513eqtr2rd 2772 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑝𝑃 Σ𝑘𝐾 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  csb 3865  cdif 3914  wss 3917  {csn 4592  cop 4598   ciun 4958  cmpt 5191   × cxp 5639  ran crn 5642  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Fincfn 8921  cc 11073  0cc0 11075  cn 12193  cexp 14033  Σcsu 15659  cprime 16648  Λcvma 27009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015
This theorem is referenced by:  fsumvma2  27132  vmasum  27134
  Copyright terms: Public domain W3C validator