MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   GIF version

Theorem gexdvds 19198
Description: The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvds ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexdvds
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
3 gexid.3 . . . . . 6 · = (.g𝐺)
4 gexid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4gexdvdsi 19197 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸𝑁) → (𝑁 · 𝑥) = 0 )
653expia 1120 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝐸𝑁 → (𝑁 · 𝑥) = 0 ))
76ralrimdva 3107 . . 3 (𝐺 ∈ Grp → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
87adantr 481 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
9 noel 4265 . . . . . . 7 ¬ (abs‘𝑁) ∈ ∅
10 simprr 770 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)
1110eleq2d 2825 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈ ∅))
12 oveq1 7291 . . . . . . . . . . . 12 (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥))
1312eqeq1d 2741 . . . . . . . . . . 11 (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 ))
1413ralbidv 3113 . . . . . . . . . 10 (𝑦 = (abs‘𝑁) → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1514elrab 3625 . . . . . . . . 9 ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1611, 15bitr3di 286 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 )))
1716rbaibd 541 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔ (abs‘𝑁) ∈ ℕ))
189, 17mtbii 326 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬ (abs‘𝑁) ∈ ℕ)
1918ex 413 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬ (abs‘𝑁) ∈ ℕ))
20 nn0abscl 15033 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
2120ad2antlr 724 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (abs‘𝑁) ∈ ℕ0)
22 elnn0 12244 . . . . . . 7 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2321, 22sylib 217 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2423ord 861 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
2519, 24syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0))
26 simpr 485 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁)
2726oveq1d 7299 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥))
2827eqeq1d 2741 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
29 oveq1 7291 . . . . . . . . 9 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥))
3029eqeq1d 2741 . . . . . . . 8 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 ))
31 eqid 2739 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
321, 3, 31mulgneg 18731 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
33323expa 1117 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
344, 31grpinvid 18645 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
3534ad2antrr 723 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
3635eqcomd 2745 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0 = ((invg𝐺)‘ 0 ))
3733, 36eqeq12d 2755 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ ((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 )))
38 simpll 764 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
391, 3mulgcl 18730 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
40393expa 1117 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
411, 4grpidcl 18616 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0𝑋)
4241ad2antrr 723 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0𝑋)
431, 31, 38, 40, 42grpinv11 18653 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 ))
4437, 43bitrd 278 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
4530, 44sylan9bbr 511 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
46 zre 12332 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746ad2antlr 724 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝑁 ∈ ℝ)
4847absord 15136 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
4928, 45, 48mpjaodan 956 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
5049ralbidva 3112 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5150adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
52 0dvds 15995 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
5352ad2antlr 724 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0 ∥ 𝑁𝑁 = 0))
54 simprl 768 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0)
5554breq1d 5085 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸𝑁 ↔ 0 ∥ 𝑁))
56 zcn 12333 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5756ad2antlr 724 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈ ℂ)
5857abs00ad 15011 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
5953, 55, 583bitr4rd 312 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝐸𝑁))
6025, 51, 593imtr3d 293 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
61 elrabi 3619 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ)
6246adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
63 nnrp 12750 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ+)
64 modval 13600 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6562, 63, 64syl2an 596 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6665adantr 481 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6766oveq1d 7299 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥))
68 simplll 772 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp)
69 simpllr 773 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈ ℤ)
70 nnz 12351 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
7170ad2antlr 724 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ ℤ)
72 rerpdivcl 12769 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 / 𝐸) ∈ ℝ)
7362, 63, 72syl2an 596 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ)
7473flcld 13527 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7574adantr 481 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7671, 75zmulcld 12441 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ)
77 simprl 768 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥𝑋)
78 eqid 2739 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
791, 3, 78mulgsubdir 18752 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
8068, 69, 76, 77, 79syl13anc 1371 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
81 simprr 770 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 )
82 dvdsmul1 15996 . . . . . . . . . . . . 13 ((𝐸 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
8371, 75, 82syl2anc 584 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
841, 2, 3, 4gexdvdsi 19197 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8568, 77, 83, 84syl3anc 1370 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8681, 85oveq12d 7302 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g𝐺) 0 ))
87 simpll 764 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
881, 4, 78grpsubid 18668 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0𝑋) → ( 0 (-g𝐺) 0 ) = 0 )
8987, 41, 88syl2anc2 585 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0 (-g𝐺) 0 ) = 0 )
9089adantr 481 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0 (-g𝐺) 0 ) = 0 )
9186, 90eqtrd 2779 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 )
9267, 80, 913eqtrd 2783 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 )
9392expr 457 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 ))
9493ralimdva 3109 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ))
95 modlt 13609 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) < 𝐸)
9662, 63, 95syl2an 596 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸)
97 zmodcl 13620 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9897adantll 711 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9998nn0red 12303 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ)
100 nnre 11989 . . . . . . . . . 10 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ)
101100adantl 482 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℝ)
10299, 101ltnled 11131 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸)))
10396, 102mpbid 231 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬ 𝐸 ≤ (𝑁 mod 𝐸))
1041, 2, 3, 4gexlem2 19196 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸)))
105 elfzle2 13269 . . . . . . . . . . . . 13 (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸))
106104, 105syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸))
1071063expia 1120 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0𝐸 ≤ (𝑁 mod 𝐸)))
108107impancom 452 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸)))
109108con3d 152 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))
110109ex 413 . . . . . . . 8 (𝐺 ∈ Grp → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
111110ad2antrr 723 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
112103, 111mpid 44 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ))
113 elnn0 12244 . . . . . . . 8 ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
11498, 113sylib 217 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
115114ord 861 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬ (𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0))
11694, 112, 1153syld 60 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0))
117 simpr 485 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℕ)
118 simplr 766 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈ ℤ)
119 dvdsval3 15976 . . . . . 6 ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
120117, 118, 119syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
121116, 120sylibrd 258 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
12261, 121sylan2 593 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
123 eqid 2739 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
1241, 3, 4, 2, 123gexlem1 19193 . . . 4 (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
125124adantr 481 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
12660, 122, 125mpjaodan 956 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
1278, 126impbid 211 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wral 3065  {crab 3069  c0 4257   class class class wbr 5075  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   · cmul 10885   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  0cn0 12242  cz 12328  +crp 12739  ...cfz 13248  cfl 13519   mod cmo 13598  abscabs 14954  cdvds 15972  Basecbs 16921  0gc0g 17159  Grpcgrp 18586  invgcminusg 18587  -gcsg 18588  .gcmg 18709  gExcgex 19142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-fz 13249  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-dvds 15973  df-0g 17161  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-gex 19146
This theorem is referenced by:  gexdvds2  19199
  Copyright terms: Public domain W3C validator