Step | Hyp | Ref
| Expression |
1 | | gexcl.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
2 | | gexcl.2 |
. . . . . 6
⊢ 𝐸 = (gEx‘𝐺) |
3 | | gexid.3 |
. . . . . 6
⊢ · =
(.g‘𝐺) |
4 | | gexid.4 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
5 | 1, 2, 3, 4 | gexdvdsi 18356 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝑥) = 0 ) |
6 | 5 | 3expia 1154 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝐸 ∥ 𝑁 → (𝑁 · 𝑥) = 0 )) |
7 | 6 | ralrimdva 3178 |
. . 3
⊢ (𝐺 ∈ Grp → (𝐸 ∥ 𝑁 → ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
8 | 7 | adantr 474 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 → ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
9 | | noel 4150 |
. . . . . . 7
⊢ ¬
(abs‘𝑁) ∈
∅ |
10 | | oveq1 6917 |
. . . . . . . . . . . 12
⊢ (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥)) |
11 | 10 | eqeq1d 2827 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 )) |
12 | 11 | ralbidv 3195 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑁) → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 )) |
13 | 12 | elrab 3585 |
. . . . . . . . 9
⊢
((abs‘𝑁)
∈ {𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 )) |
14 | | simprr 789 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } =
∅) |
15 | 14 | eleq2d 2892 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈
∅)) |
16 | 13, 15 | syl5rbbr 278 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ))) |
17 | 16 | rbaibd 536 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔
(abs‘𝑁) ∈
ℕ)) |
18 | 9, 17 | mtbii 318 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬
(abs‘𝑁) ∈
ℕ) |
19 | 18 | ex 403 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬
(abs‘𝑁) ∈
ℕ)) |
20 | | nn0abscl 14436 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
21 | 20 | ad2antlr 718 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(abs‘𝑁) ∈
ℕ0) |
22 | | elnn0 11627 |
. . . . . . 7
⊢
((abs‘𝑁)
∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0)) |
23 | 21, 22 | sylib 210 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
ℕ ∨ (abs‘𝑁)
= 0)) |
24 | 23 | ord 895 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(¬ (abs‘𝑁) ∈
ℕ → (abs‘𝑁) = 0)) |
25 | 19, 24 | syld 47 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0)) |
26 | | simpr 479 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁) |
27 | 26 | oveq1d 6925 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥)) |
28 | 27 | eqeq1d 2827 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
29 | | oveq1 6917 |
. . . . . . . . 9
⊢
((abs‘𝑁) =
-𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥)) |
30 | 29 | eqeq1d 2827 |
. . . . . . . 8
⊢
((abs‘𝑁) =
-𝑁 →
(((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 )) |
31 | | eqid 2825 |
. . . . . . . . . . . 12
⊢
(invg‘𝐺) = (invg‘𝐺) |
32 | 1, 3, 31 | mulgneg 17920 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (-𝑁 · 𝑥) = ((invg‘𝐺)‘(𝑁 · 𝑥))) |
33 | 32 | 3expa 1151 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (-𝑁 · 𝑥) = ((invg‘𝐺)‘(𝑁 · 𝑥))) |
34 | 4, 31 | grpinvid 17837 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
((invg‘𝐺)‘ 0 ) = 0 ) |
35 | 34 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘ 0 ) = 0 ) |
36 | 35 | eqcomd 2831 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 0 =
((invg‘𝐺)‘ 0 )) |
37 | 33, 36 | eqeq12d 2840 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((-𝑁 · 𝑥) = 0 ↔
((invg‘𝐺)‘(𝑁 · 𝑥)) = ((invg‘𝐺)‘ 0 ))) |
38 | | simpll 783 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
39 | 1, 3 | mulgcl 17919 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (𝑁 · 𝑥) ∈ 𝑋) |
40 | 39 | 3expa 1151 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (𝑁 · 𝑥) ∈ 𝑋) |
41 | 1, 4 | grpidcl 17811 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
42 | 41 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
43 | 1, 31, 38, 40, 42 | grpinv11 17845 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘(𝑁 · 𝑥)) = ((invg‘𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 )) |
44 | 37, 43 | bitrd 271 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
45 | 30, 44 | sylan9bbr 506 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
46 | | zre 11715 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
47 | 46 | ad2antlr 718 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℝ) |
48 | 47 | absord 14538 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
49 | 28, 45, 48 | mpjaodan 986 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
50 | 49 | ralbidva 3194 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
51 | 50 | adantr 474 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
52 | | 0dvds 15386 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
53 | 52 | ad2antlr 718 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
54 | | simprl 787 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0) |
55 | 54 | breq1d 4885 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(𝐸 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
56 | | zcn 11716 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
57 | 56 | ad2antlr 718 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈
ℂ) |
58 | 57 | abs00ad 14414 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
59 | 53, 55, 58 | 3bitr4rd 304 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) = 0 ↔
𝐸 ∥ 𝑁)) |
60 | 25, 51, 59 | 3imtr3d 285 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
61 | | elrabi 3580 |
. . . 4
⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ) |
62 | 46 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℝ) |
63 | | nnrp 12132 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℝ+) |
64 | | modval 12972 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
65 | 62, 63, 64 | syl2an 589 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
66 | 65 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
67 | 66 | oveq1d 6925 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥)) |
68 | | simplll 791 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp) |
69 | | simpllr 793 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈
ℤ) |
70 | | nnz 11734 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℤ) |
71 | 70 | ad2antlr 718 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈
ℤ) |
72 | | rerpdivcl 12151 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 / 𝐸) ∈
ℝ) |
73 | 62, 63, 72 | syl2an 589 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ) |
74 | 73 | flcld 12901 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(⌊‘(𝑁 / 𝐸)) ∈
ℤ) |
75 | 74 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) →
(⌊‘(𝑁 / 𝐸)) ∈
ℤ) |
76 | 71, 75 | zmulcld 11823 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ) |
77 | | simprl 787 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥 ∈ 𝑋) |
78 | | eqid 2825 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
79 | 1, 3, 78 | mulgsubdir 17940 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥 ∈ 𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥))) |
80 | 68, 69, 76, 77, 79 | syl13anc 1495 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥))) |
81 | | simprr 789 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 ) |
82 | | dvdsmul1 15387 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℤ ∧
(⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) |
83 | 71, 75, 82 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) |
84 | 1, 2, 3, 4 | gexdvdsi 18356 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 ) |
85 | 68, 77, 83, 84 | syl3anc 1494 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 ) |
86 | 81, 85 | oveq12d 6928 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g‘𝐺) 0 )) |
87 | | simpll 783 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp) |
88 | 41 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 0 ∈ 𝑋) |
89 | 1, 4, 78 | grpsubid 17860 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝑋) → ( 0 (-g‘𝐺) 0 ) = 0 ) |
90 | 87, 88, 89 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0
(-g‘𝐺)
0 ) =
0
) |
91 | 90 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0
(-g‘𝐺)
0 ) =
0
) |
92 | 86, 91 | eqtrd 2861 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 ) |
93 | 67, 80, 92 | 3eqtrd 2865 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 ) |
94 | 93 | expr 450 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥 ∈ 𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 )) |
95 | 94 | ralimdva 3171 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 )) |
96 | | modlt 12981 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 mod 𝐸) < 𝐸) |
97 | 62, 63, 96 | syl2an 589 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸) |
98 | | zmodcl 12992 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈
ℕ0) |
99 | 98 | adantll 705 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈
ℕ0) |
100 | 99 | nn0red 11686 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ) |
101 | | nnre 11365 |
. . . . . . . . . 10
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℝ) |
102 | 101 | adantl 475 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈
ℝ) |
103 | 100, 102 | ltnled 10510 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸))) |
104 | 97, 103 | mpbid 224 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬
𝐸 ≤ (𝑁 mod 𝐸)) |
105 | 1, 2, 3, 4 | gexlem2 18355 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸))) |
106 | | elfzle2 12645 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸)) |
108 | 107 | 3expia 1154 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → 𝐸 ≤ (𝑁 mod 𝐸))) |
109 | 108 | impancom 445 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸))) |
110 | 109 | con3d 150 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)) |
111 | 110 | ex 403 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))) |
112 | 111 | ad2antrr 717 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))) |
113 | 104, 112 | mpid 44 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ)) |
114 | | elnn0 11627 |
. . . . . . . 8
⊢ ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0)) |
115 | 99, 114 | sylib 210 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0)) |
116 | 115 | ord 895 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬
(𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0)) |
117 | 95, 113, 116 | 3syld 60 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0)) |
118 | | simpr 479 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈
ℕ) |
119 | | simplr 785 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈
ℤ) |
120 | | dvdsval3 15368 |
. . . . . 6
⊢ ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ (𝑁 mod 𝐸) = 0)) |
121 | 118, 119,
120 | syl2anc 579 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸 ∥ 𝑁 ↔ (𝑁 mod 𝐸) = 0)) |
122 | 117, 121 | sylibrd 251 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
123 | 61, 122 | sylan2 586 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
124 | | eqid 2825 |
. . . . 5
⊢ {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
125 | 1, 3, 4, 2, 124 | gexlem1 18352 |
. . . 4
⊢ (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
126 | 125 | adantr 474 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
127 | 60, 123, 126 | mpjaodan 986 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
128 | 8, 127 | impbid 204 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |