MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   GIF version

Theorem gexdvds 18707
Description: The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvds ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexdvds
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
3 gexid.3 . . . . . 6 · = (.g𝐺)
4 gexid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4gexdvdsi 18706 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸𝑁) → (𝑁 · 𝑥) = 0 )
653expia 1118 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝐸𝑁 → (𝑁 · 𝑥) = 0 ))
76ralrimdva 3184 . . 3 (𝐺 ∈ Grp → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
87adantr 484 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
9 noel 4280 . . . . . . 7 ¬ (abs‘𝑁) ∈ ∅
10 simprr 772 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)
1110eleq2d 2901 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈ ∅))
12 oveq1 7153 . . . . . . . . . . . 12 (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥))
1312eqeq1d 2826 . . . . . . . . . . 11 (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 ))
1413ralbidv 3192 . . . . . . . . . 10 (𝑦 = (abs‘𝑁) → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1514elrab 3666 . . . . . . . . 9 ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1611, 15bitr3di 289 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 )))
1716rbaibd 544 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔ (abs‘𝑁) ∈ ℕ))
189, 17mtbii 329 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬ (abs‘𝑁) ∈ ℕ)
1918ex 416 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬ (abs‘𝑁) ∈ ℕ))
20 nn0abscl 14670 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
2120ad2antlr 726 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (abs‘𝑁) ∈ ℕ0)
22 elnn0 11894 . . . . . . 7 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2321, 22sylib 221 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2423ord 861 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
2519, 24syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0))
26 simpr 488 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁)
2726oveq1d 7161 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥))
2827eqeq1d 2826 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
29 oveq1 7153 . . . . . . . . 9 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥))
3029eqeq1d 2826 . . . . . . . 8 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 ))
31 eqid 2824 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
321, 3, 31mulgneg 18244 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
33323expa 1115 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
344, 31grpinvid 18158 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
3534ad2antrr 725 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
3635eqcomd 2830 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0 = ((invg𝐺)‘ 0 ))
3733, 36eqeq12d 2840 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ ((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 )))
38 simpll 766 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
391, 3mulgcl 18243 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
40393expa 1115 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
411, 4grpidcl 18129 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0𝑋)
4241ad2antrr 725 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0𝑋)
431, 31, 38, 40, 42grpinv11 18166 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 ))
4437, 43bitrd 282 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
4530, 44sylan9bbr 514 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
46 zre 11980 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746ad2antlr 726 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝑁 ∈ ℝ)
4847absord 14773 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
4928, 45, 48mpjaodan 956 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
5049ralbidva 3191 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5150adantr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
52 0dvds 15628 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
5352ad2antlr 726 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0 ∥ 𝑁𝑁 = 0))
54 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0)
5554breq1d 5063 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸𝑁 ↔ 0 ∥ 𝑁))
56 zcn 11981 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5756ad2antlr 726 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈ ℂ)
5857abs00ad 14648 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
5953, 55, 583bitr4rd 315 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝐸𝑁))
6025, 51, 593imtr3d 296 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
61 elrabi 3661 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ)
6246adantl 485 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
63 nnrp 12395 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ+)
64 modval 13241 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6562, 63, 64syl2an 598 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6665adantr 484 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6766oveq1d 7161 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥))
68 simplll 774 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp)
69 simpllr 775 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈ ℤ)
70 nnz 11999 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
7170ad2antlr 726 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ ℤ)
72 rerpdivcl 12414 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 / 𝐸) ∈ ℝ)
7362, 63, 72syl2an 598 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ)
7473flcld 13170 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7574adantr 484 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7671, 75zmulcld 12088 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ)
77 simprl 770 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥𝑋)
78 eqid 2824 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
791, 3, 78mulgsubdir 18265 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
8068, 69, 76, 77, 79syl13anc 1369 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
81 simprr 772 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 )
82 dvdsmul1 15629 . . . . . . . . . . . . 13 ((𝐸 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
8371, 75, 82syl2anc 587 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
841, 2, 3, 4gexdvdsi 18706 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8568, 77, 83, 84syl3anc 1368 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8681, 85oveq12d 7164 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g𝐺) 0 ))
87 simpll 766 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
881, 4, 78grpsubid 18181 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0𝑋) → ( 0 (-g𝐺) 0 ) = 0 )
8987, 41, 88syl2anc2 588 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0 (-g𝐺) 0 ) = 0 )
9089adantr 484 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0 (-g𝐺) 0 ) = 0 )
9186, 90eqtrd 2859 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 )
9267, 80, 913eqtrd 2863 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 )
9392expr 460 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 ))
9493ralimdva 3172 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ))
95 modlt 13250 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) < 𝐸)
9662, 63, 95syl2an 598 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸)
97 zmodcl 13261 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9897adantll 713 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9998nn0red 11951 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ)
100 nnre 11639 . . . . . . . . . 10 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ)
101100adantl 485 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℝ)
10299, 101ltnled 10781 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸)))
10396, 102mpbid 235 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬ 𝐸 ≤ (𝑁 mod 𝐸))
1041, 2, 3, 4gexlem2 18705 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸)))
105 elfzle2 12913 . . . . . . . . . . . . 13 (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸))
106104, 105syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸))
1071063expia 1118 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0𝐸 ≤ (𝑁 mod 𝐸)))
108107impancom 455 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸)))
109108con3d 155 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))
110109ex 416 . . . . . . . 8 (𝐺 ∈ Grp → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
111110ad2antrr 725 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
112103, 111mpid 44 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ))
113 elnn0 11894 . . . . . . . 8 ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
11498, 113sylib 221 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
115114ord 861 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬ (𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0))
11694, 112, 1153syld 60 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0))
117 simpr 488 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℕ)
118 simplr 768 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈ ℤ)
119 dvdsval3 15609 . . . . . 6 ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
120117, 118, 119syl2anc 587 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
121116, 120sylibrd 262 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
12261, 121sylan2 595 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
123 eqid 2824 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
1241, 3, 4, 2, 123gexlem1 18702 . . . 4 (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
125124adantr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
12660, 122, 125mpjaodan 956 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
1278, 126impbid 215 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wral 3133  {crab 3137  c0 4276   class class class wbr 5053  cfv 6344  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  0cn0 11892  cz 11976  +crp 12384  ...cfz 12892  cfl 13162   mod cmo 13239  abscabs 14591  cdvds 15605  Basecbs 16481  0gc0g 16711  Grpcgrp 18101  invgcminusg 18102  -gcsg 18103  .gcmg 18222  gExcgex 18651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8899  df-inf 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fz 12893  df-fl 13164  df-mod 13240  df-seq 13372  df-exp 13433  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-dvds 15606  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-grp 18104  df-minusg 18105  df-sbg 18106  df-mulg 18223  df-gex 18655
This theorem is referenced by:  gexdvds2  18708
  Copyright terms: Public domain W3C validator