Step | Hyp | Ref
| Expression |
1 | | gexcl.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
2 | | gexcl.2 |
. . . . . 6
⊢ 𝐸 = (gEx‘𝐺) |
3 | | gexid.3 |
. . . . . 6
⊢ · =
(.g‘𝐺) |
4 | | gexid.4 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
5 | 1, 2, 3, 4 | gexdvdsi 19197 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 𝑁) → (𝑁 · 𝑥) = 0 ) |
6 | 5 | 3expia 1120 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝐸 ∥ 𝑁 → (𝑁 · 𝑥) = 0 )) |
7 | 6 | ralrimdva 3107 |
. . 3
⊢ (𝐺 ∈ Grp → (𝐸 ∥ 𝑁 → ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
8 | 7 | adantr 481 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 → ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
9 | | noel 4265 |
. . . . . . 7
⊢ ¬
(abs‘𝑁) ∈
∅ |
10 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } =
∅) |
11 | 10 | eleq2d 2825 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈
∅)) |
12 | | oveq1 7291 |
. . . . . . . . . . . 12
⊢ (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥)) |
13 | 12 | eqeq1d 2741 |
. . . . . . . . . . 11
⊢ (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 )) |
14 | 13 | ralbidv 3113 |
. . . . . . . . . 10
⊢ (𝑦 = (abs‘𝑁) → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 )) |
15 | 14 | elrab 3625 |
. . . . . . . . 9
⊢
((abs‘𝑁)
∈ {𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 )) |
16 | 11, 15 | bitr3di 286 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ))) |
17 | 16 | rbaibd 541 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔
(abs‘𝑁) ∈
ℕ)) |
18 | 9, 17 | mtbii 326 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧
∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬
(abs‘𝑁) ∈
ℕ) |
19 | 18 | ex 413 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬
(abs‘𝑁) ∈
ℕ)) |
20 | | nn0abscl 15033 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℕ0) |
21 | 20 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(abs‘𝑁) ∈
ℕ0) |
22 | | elnn0 12244 |
. . . . . . 7
⊢
((abs‘𝑁)
∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0)) |
23 | 21, 22 | sylib 217 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) ∈
ℕ ∨ (abs‘𝑁)
= 0)) |
24 | 23 | ord 861 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(¬ (abs‘𝑁) ∈
ℕ → (abs‘𝑁) = 0)) |
25 | 19, 24 | syld 47 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0)) |
26 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁) |
27 | 26 | oveq1d 7299 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥)) |
28 | 27 | eqeq1d 2741 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
29 | | oveq1 7291 |
. . . . . . . . 9
⊢
((abs‘𝑁) =
-𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥)) |
30 | 29 | eqeq1d 2741 |
. . . . . . . 8
⊢
((abs‘𝑁) =
-𝑁 →
(((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 )) |
31 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(invg‘𝐺) = (invg‘𝐺) |
32 | 1, 3, 31 | mulgneg 18731 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (-𝑁 · 𝑥) = ((invg‘𝐺)‘(𝑁 · 𝑥))) |
33 | 32 | 3expa 1117 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (-𝑁 · 𝑥) = ((invg‘𝐺)‘(𝑁 · 𝑥))) |
34 | 4, 31 | grpinvid 18645 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp →
((invg‘𝐺)‘ 0 ) = 0 ) |
35 | 34 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘ 0 ) = 0 ) |
36 | 35 | eqcomd 2745 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 0 =
((invg‘𝐺)‘ 0 )) |
37 | 33, 36 | eqeq12d 2755 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((-𝑁 · 𝑥) = 0 ↔
((invg‘𝐺)‘(𝑁 · 𝑥)) = ((invg‘𝐺)‘ 0 ))) |
38 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
39 | 1, 3 | mulgcl 18730 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ 𝑋) → (𝑁 · 𝑥) ∈ 𝑋) |
40 | 39 | 3expa 1117 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (𝑁 · 𝑥) ∈ 𝑋) |
41 | 1, 4 | grpidcl 18616 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
42 | 41 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 0 ∈ 𝑋) |
43 | 1, 31, 38, 40, 42 | grpinv11 18653 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘(𝑁 · 𝑥)) = ((invg‘𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 )) |
44 | 37, 43 | bitrd 278 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
45 | 30, 44 | sylan9bbr 511 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
46 | | zre 12332 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
47 | 46 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → 𝑁 ∈ ℝ) |
48 | 47 | absord 15136 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
49 | 28, 45, 48 | mpjaodan 956 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ 𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
50 | 49 | ralbidva 3112 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
51 | 50 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
52 | | 0dvds 15995 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
53 | 52 | ad2antlr 724 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
54 | | simprl 768 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0) |
55 | 54 | breq1d 5085 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(𝐸 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
56 | | zcn 12333 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
57 | 56 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈
ℂ) |
58 | 57 | abs00ad 15011 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) = 0 ↔
𝑁 = 0)) |
59 | 53, 55, 58 | 3bitr4rd 312 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
((abs‘𝑁) = 0 ↔
𝐸 ∥ 𝑁)) |
60 | 25, 51, 59 | 3imtr3d 293 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
61 | | elrabi 3619 |
. . . 4
⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ) |
62 | 46 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℝ) |
63 | | nnrp 12750 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℝ+) |
64 | | modval 13600 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
65 | 62, 63, 64 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
66 | 65 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸))))) |
67 | 66 | oveq1d 7299 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥)) |
68 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp) |
69 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈
ℤ) |
70 | | nnz 12351 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℤ) |
71 | 70 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈
ℤ) |
72 | | rerpdivcl 12769 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 / 𝐸) ∈
ℝ) |
73 | 62, 63, 72 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ) |
74 | 73 | flcld 13527 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(⌊‘(𝑁 / 𝐸)) ∈
ℤ) |
75 | 74 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) →
(⌊‘(𝑁 / 𝐸)) ∈
ℤ) |
76 | 71, 75 | zmulcld 12441 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ) |
77 | | simprl 768 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥 ∈ 𝑋) |
78 | | eqid 2739 |
. . . . . . . . . . 11
⊢
(-g‘𝐺) = (-g‘𝐺) |
79 | 1, 3, 78 | mulgsubdir 18752 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥 ∈ 𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥))) |
80 | 68, 69, 76, 77, 79 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥))) |
81 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 ) |
82 | | dvdsmul1 15996 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℤ ∧
(⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) |
83 | 71, 75, 82 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) |
84 | 1, 2, 3, 4 | gexdvdsi 19197 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 ) |
85 | 68, 77, 83, 84 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 ) |
86 | 81, 85 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g‘𝐺) 0 )) |
87 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp) |
88 | 1, 4, 78 | grpsubid 18668 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝑋) → ( 0 (-g‘𝐺) 0 ) = 0 ) |
89 | 87, 41, 88 | syl2anc2 585 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0
(-g‘𝐺)
0 ) =
0
) |
90 | 89 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0
(-g‘𝐺)
0 ) =
0
) |
91 | 86, 90 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g‘𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 ) |
92 | 67, 80, 91 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 ) |
93 | 92 | expr 457 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥 ∈ 𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 )) |
94 | 93 | ralimdva 3109 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 )) |
95 | | modlt 13609 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+)
→ (𝑁 mod 𝐸) < 𝐸) |
96 | 62, 63, 95 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸) |
97 | | zmodcl 13620 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈
ℕ0) |
98 | 97 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈
ℕ0) |
99 | 98 | nn0red 12303 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ) |
100 | | nnre 11989 |
. . . . . . . . . 10
⊢ (𝐸 ∈ ℕ → 𝐸 ∈
ℝ) |
101 | 100 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈
ℝ) |
102 | 99, 101 | ltnled 11131 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸))) |
103 | 96, 102 | mpbid 231 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬
𝐸 ≤ (𝑁 mod 𝐸)) |
104 | 1, 2, 3, 4 | gexlem2 19196 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸))) |
105 | | elfzle2 13269 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸)) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸)) |
107 | 106 | 3expia 1120 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → 𝐸 ≤ (𝑁 mod 𝐸))) |
108 | 107 | impancom 452 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸))) |
109 | 108 | con3d 152 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)) |
110 | 109 | ex 413 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))) |
111 | 110 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))) |
112 | 103, 111 | mpid 44 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ)) |
113 | | elnn0 12244 |
. . . . . . . 8
⊢ ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0)) |
114 | 98, 113 | sylib 217 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0)) |
115 | 114 | ord 861 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬
(𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0)) |
116 | 94, 112, 115 | 3syld 60 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0)) |
117 | | simpr 485 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈
ℕ) |
118 | | simplr 766 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈
ℤ) |
119 | | dvdsval3 15976 |
. . . . . 6
⊢ ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ (𝑁 mod 𝐸) = 0)) |
120 | 117, 118,
119 | syl2anc 584 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸 ∥ 𝑁 ↔ (𝑁 mod 𝐸) = 0)) |
121 | 116, 120 | sylibrd 258 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
122 | 61, 121 | sylan2 593 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
123 | | eqid 2739 |
. . . . 5
⊢ {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
124 | 1, 3, 4, 2, 123 | gexlem1 19193 |
. . . 4
⊢ (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
125 | 124 | adantr 481 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
126 | 60, 122, 125 | mpjaodan 956 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) →
(∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 → 𝐸 ∥ 𝑁)) |
127 | 8, 126 | impbid 211 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸 ∥ 𝑁 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |