MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   GIF version

Theorem gexdvds 18357
Description: The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvds ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexdvds
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
3 gexid.3 . . . . . 6 · = (.g𝐺)
4 gexid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4gexdvdsi 18356 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸𝑁) → (𝑁 · 𝑥) = 0 )
653expia 1154 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝐸𝑁 → (𝑁 · 𝑥) = 0 ))
76ralrimdva 3178 . . 3 (𝐺 ∈ Grp → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
87adantr 474 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
9 noel 4150 . . . . . . 7 ¬ (abs‘𝑁) ∈ ∅
10 oveq1 6917 . . . . . . . . . . . 12 (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥))
1110eqeq1d 2827 . . . . . . . . . . 11 (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 ))
1211ralbidv 3195 . . . . . . . . . 10 (𝑦 = (abs‘𝑁) → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1312elrab 3585 . . . . . . . . 9 ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
14 simprr 789 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)
1514eleq2d 2892 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈ ∅))
1613, 15syl5rbbr 278 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 )))
1716rbaibd 536 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔ (abs‘𝑁) ∈ ℕ))
189, 17mtbii 318 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬ (abs‘𝑁) ∈ ℕ)
1918ex 403 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬ (abs‘𝑁) ∈ ℕ))
20 nn0abscl 14436 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
2120ad2antlr 718 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (abs‘𝑁) ∈ ℕ0)
22 elnn0 11627 . . . . . . 7 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2321, 22sylib 210 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2423ord 895 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
2519, 24syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0))
26 simpr 479 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁)
2726oveq1d 6925 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥))
2827eqeq1d 2827 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
29 oveq1 6917 . . . . . . . . 9 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥))
3029eqeq1d 2827 . . . . . . . 8 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 ))
31 eqid 2825 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
321, 3, 31mulgneg 17920 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
33323expa 1151 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
344, 31grpinvid 17837 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
3534ad2antrr 717 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
3635eqcomd 2831 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0 = ((invg𝐺)‘ 0 ))
3733, 36eqeq12d 2840 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ ((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 )))
38 simpll 783 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
391, 3mulgcl 17919 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
40393expa 1151 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
411, 4grpidcl 17811 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0𝑋)
4241ad2antrr 717 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0𝑋)
431, 31, 38, 40, 42grpinv11 17845 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 ))
4437, 43bitrd 271 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
4530, 44sylan9bbr 506 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
46 zre 11715 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746ad2antlr 718 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝑁 ∈ ℝ)
4847absord 14538 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
4928, 45, 48mpjaodan 986 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
5049ralbidva 3194 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5150adantr 474 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
52 0dvds 15386 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
5352ad2antlr 718 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0 ∥ 𝑁𝑁 = 0))
54 simprl 787 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0)
5554breq1d 4885 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸𝑁 ↔ 0 ∥ 𝑁))
56 zcn 11716 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5756ad2antlr 718 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈ ℂ)
5857abs00ad 14414 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
5953, 55, 583bitr4rd 304 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝐸𝑁))
6025, 51, 593imtr3d 285 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
61 elrabi 3580 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ)
6246adantl 475 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
63 nnrp 12132 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ+)
64 modval 12972 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6562, 63, 64syl2an 589 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6665adantr 474 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6766oveq1d 6925 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥))
68 simplll 791 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp)
69 simpllr 793 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈ ℤ)
70 nnz 11734 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
7170ad2antlr 718 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ ℤ)
72 rerpdivcl 12151 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 / 𝐸) ∈ ℝ)
7362, 63, 72syl2an 589 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ)
7473flcld 12901 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7574adantr 474 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7671, 75zmulcld 11823 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ)
77 simprl 787 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥𝑋)
78 eqid 2825 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
791, 3, 78mulgsubdir 17940 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
8068, 69, 76, 77, 79syl13anc 1495 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
81 simprr 789 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 )
82 dvdsmul1 15387 . . . . . . . . . . . . 13 ((𝐸 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
8371, 75, 82syl2anc 579 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
841, 2, 3, 4gexdvdsi 18356 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8568, 77, 83, 84syl3anc 1494 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8681, 85oveq12d 6928 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g𝐺) 0 ))
87 simpll 783 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
8841ad2antrr 717 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 0𝑋)
891, 4, 78grpsubid 17860 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0𝑋) → ( 0 (-g𝐺) 0 ) = 0 )
9087, 88, 89syl2anc 579 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0 (-g𝐺) 0 ) = 0 )
9190adantr 474 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0 (-g𝐺) 0 ) = 0 )
9286, 91eqtrd 2861 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 )
9367, 80, 923eqtrd 2865 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 )
9493expr 450 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 ))
9594ralimdva 3171 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ))
96 modlt 12981 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) < 𝐸)
9762, 63, 96syl2an 589 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸)
98 zmodcl 12992 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9998adantll 705 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
10099nn0red 11686 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ)
101 nnre 11365 . . . . . . . . . 10 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ)
102101adantl 475 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℝ)
103100, 102ltnled 10510 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸)))
10497, 103mpbid 224 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬ 𝐸 ≤ (𝑁 mod 𝐸))
1051, 2, 3, 4gexlem2 18355 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸)))
106 elfzle2 12645 . . . . . . . . . . . . 13 (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸))
107105, 106syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸))
1081073expia 1154 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0𝐸 ≤ (𝑁 mod 𝐸)))
109108impancom 445 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸)))
110109con3d 150 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))
111110ex 403 . . . . . . . 8 (𝐺 ∈ Grp → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
112111ad2antrr 717 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
113104, 112mpid 44 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ))
114 elnn0 11627 . . . . . . . 8 ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
11599, 114sylib 210 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
116115ord 895 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬ (𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0))
11795, 113, 1163syld 60 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0))
118 simpr 479 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℕ)
119 simplr 785 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈ ℤ)
120 dvdsval3 15368 . . . . . 6 ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
121118, 119, 120syl2anc 579 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
122117, 121sylibrd 251 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
12361, 122sylan2 586 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
124 eqid 2825 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
1251, 3, 4, 2, 124gexlem1 18352 . . . 4 (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
126125adantr 474 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
12760, 123, 126mpjaodan 986 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
1288, 127impbid 204 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wral 3117  {crab 3121  c0 4146   class class class wbr 4875  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   · cmul 10264   < clt 10398  cle 10399  cmin 10592  -cneg 10593   / cdiv 11016  cn 11357  0cn0 11625  cz 11711  +crp 12119  ...cfz 12626  cfl 12893   mod cmo 12970  abscabs 14358  cdvds 15364  Basecbs 16229  0gc0g 16460  Grpcgrp 17783  invgcminusg 17784  -gcsg 17785  .gcmg 17901  gExcgex 18303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-dvds 15365  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mulg 17902  df-gex 18307
This theorem is referenced by:  gexdvds2  18358
  Copyright terms: Public domain W3C validator