Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusker Structured version   Visualization version   GIF version

Theorem qusker 30969
Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusker.b 𝑉 = (Base‘𝑀)
qusker.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
qusker.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusker.1 0 = (0g𝑁)
Assertion
Ref Expression
qusker (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem qusker
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusker.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 qusker.b . . . . 5 𝑉 = (Base‘𝑀)
43a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑉 = (Base‘𝑀))
5 qusker.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7168 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) ∈ V)
8 nsgsubg 18302 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺 ∈ (SubGrp‘𝑀))
9 subgrcl 18276 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
108, 9syl 17 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑀 ∈ Grp)
112, 4, 5, 7, 10quslem 16808 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
12 fofn 6567 . . 3 (𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)) → 𝐹 Fn 𝑉)
13 fniniseg2 6809 . . 3 (𝐹 Fn 𝑉 → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
1411, 12, 133syl 18 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
15 qusker.1 . . . . . 6 0 = (0g𝑁)
16 eqid 2798 . . . . . . 7 (0g𝑀) = (0g𝑀)
171, 16qus0 18330 . . . . . 6 (𝐺 ∈ (NrmSGrp‘𝑀) → [(0g𝑀)](𝑀 ~QG 𝐺) = (0g𝑁))
1815, 17eqtr4id 2852 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 0 = [(0g𝑀)](𝑀 ~QG 𝐺))
19 eceq1 8310 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺))
20 ecexg 8276 . . . . . . 7 ((𝑀 ~QG 𝐺) ∈ V → [𝑦](𝑀 ~QG 𝐺) ∈ V)
216, 20ax-mp 5 . . . . . 6 [𝑦](𝑀 ~QG 𝐺) ∈ V
2219, 5, 21fvmpt 6745 . . . . 5 (𝑦𝑉 → (𝐹𝑦) = [𝑦](𝑀 ~QG 𝐺))
2318, 22eqeqan12d 2815 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
24 eqcom 2805 . . . . 5 ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 )
2524a1i 11 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 ))
26 simpl 486 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝐺 ∈ (NrmSGrp‘𝑀))
27 simpr 488 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝑦𝑉)
283, 16grpidcl 18123 . . . . . . 7 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑉)
2926, 10, 283syl 18 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (0g𝑀) ∈ 𝑉)
303subgss 18272 . . . . . . . . . . 11 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝑉)
318, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺𝑉)
32 eqid 2798 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
33 eqid 2798 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
34 eqid 2798 . . . . . . . . . . 11 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
353, 32, 33, 34eqgval 18321 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝐺𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3610, 31, 35syl2anc 587 . . . . . . . . 9 (𝐺 ∈ (NrmSGrp‘𝑀) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3736adantr 484 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
38 df-3an 1086 . . . . . . . . 9 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ (((0g𝑀) ∈ 𝑉𝑦𝑉) ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
3938biancomi 466 . . . . . . . 8 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)))
4037, 39syl6bb 290 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉))))
4140rbaibd 544 . . . . . 6 (((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
4226, 27, 29, 27, 41syl22anc 837 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
433, 34eqger 18322 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
448, 43syl 17 . . . . . . 7 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
4544adantr 484 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (𝑀 ~QG 𝐺) Er 𝑉)
4645, 27erth2 8322 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
4716, 32grpinvid 18152 . . . . . . . . 9 (𝑀 ∈ Grp → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4826, 10, 473syl 18 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4948oveq1d 7150 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
503, 33, 16grplid 18125 . . . . . . . 8 ((𝑀 ∈ Grp ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5110, 50sylan 583 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5249, 51eqtrd 2833 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = 𝑦)
5352eleq1d 2874 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺𝑦𝐺))
5442, 46, 533bitr3d 312 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ([(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺) ↔ 𝑦𝐺))
5523, 25, 543bitr3d 312 . . 3 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((𝐹𝑦) = 0𝑦𝐺))
5655rabbidva 3425 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉 ∣ (𝐹𝑦) = 0 } = {𝑦𝑉𝑦𝐺})
57 dfss7 4167 . . 3 (𝐺𝑉 ↔ {𝑦𝑉𝑦𝐺} = 𝐺)
5831, 57sylib 221 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉𝑦𝐺} = 𝐺)
5914, 56, 583eqtrd 2837 1 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  ontowfo 6322  cfv 6324  (class class class)co 7135   Er wer 8269  [cec 8270   / cqs 8271  Basecbs 16475  +gcplusg 16557  0gc0g 16705   /s cqus 16770  Grpcgrp 18095  invgcminusg 18096  SubGrpcsubg 18265  NrmSGrpcnsg 18266   ~QG cqg 18267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-nsg 18269  df-eqg 18270
This theorem is referenced by:  qusdimsum  31112
  Copyright terms: Public domain W3C validator