Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusker Structured version   Visualization version   GIF version

Theorem qusker 30954
 Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusker.b 𝑉 = (Base‘𝑀)
qusker.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
qusker.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusker.1 0 = (0g𝑁)
Assertion
Ref Expression
qusker (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem qusker
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusker.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 qusker.b . . . . 5 𝑉 = (Base‘𝑀)
43a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑉 = (Base‘𝑀))
5 qusker.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7182 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) ∈ V)
8 nsgsubg 18310 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺 ∈ (SubGrp‘𝑀))
9 subgrcl 18284 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
108, 9syl 17 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑀 ∈ Grp)
112, 4, 5, 7, 10quslem 16816 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
12 fofn 6583 . . 3 (𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)) → 𝐹 Fn 𝑉)
13 fniniseg2 6823 . . 3 (𝐹 Fn 𝑉 → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
1411, 12, 133syl 18 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
15 eqid 2824 . . . . . . 7 (0g𝑀) = (0g𝑀)
161, 15qus0 18338 . . . . . 6 (𝐺 ∈ (NrmSGrp‘𝑀) → [(0g𝑀)](𝑀 ~QG 𝐺) = (0g𝑁))
17 qusker.1 . . . . . 6 0 = (0g𝑁)
1816, 17syl6reqr 2878 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 0 = [(0g𝑀)](𝑀 ~QG 𝐺))
19 eceq1 8323 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺))
20 ecexg 8289 . . . . . . 7 ((𝑀 ~QG 𝐺) ∈ V → [𝑦](𝑀 ~QG 𝐺) ∈ V)
216, 20ax-mp 5 . . . . . 6 [𝑦](𝑀 ~QG 𝐺) ∈ V
2219, 5, 21fvmpt 6759 . . . . 5 (𝑦𝑉 → (𝐹𝑦) = [𝑦](𝑀 ~QG 𝐺))
2318, 22eqeqan12d 2841 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
24 eqcom 2831 . . . . 5 ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 )
2524a1i 11 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 ))
26 simpl 486 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝐺 ∈ (NrmSGrp‘𝑀))
27 simpr 488 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝑦𝑉)
283, 15grpidcl 18131 . . . . . . 7 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑉)
2926, 10, 283syl 18 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (0g𝑀) ∈ 𝑉)
303subgss 18280 . . . . . . . . . . 11 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝑉)
318, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺𝑉)
32 eqid 2824 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
33 eqid 2824 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
34 eqid 2824 . . . . . . . . . . 11 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
353, 32, 33, 34eqgval 18329 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝐺𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3610, 31, 35syl2anc 587 . . . . . . . . 9 (𝐺 ∈ (NrmSGrp‘𝑀) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3736adantr 484 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
38 df-3an 1086 . . . . . . . . 9 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ (((0g𝑀) ∈ 𝑉𝑦𝑉) ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
3938biancomi 466 . . . . . . . 8 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)))
4037, 39syl6bb 290 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉))))
4140rbaibd 544 . . . . . 6 (((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
4226, 27, 29, 27, 41syl22anc 837 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
433, 34eqger 18330 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
448, 43syl 17 . . . . . . 7 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
4544adantr 484 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (𝑀 ~QG 𝐺) Er 𝑉)
4645, 27erth2 8335 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
4715, 32grpinvid 18160 . . . . . . . . 9 (𝑀 ∈ Grp → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4826, 10, 473syl 18 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4948oveq1d 7164 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
503, 33, 15grplid 18133 . . . . . . . 8 ((𝑀 ∈ Grp ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5110, 50sylan 583 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5249, 51eqtrd 2859 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = 𝑦)
5352eleq1d 2900 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺𝑦𝐺))
5442, 46, 533bitr3d 312 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ([(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺) ↔ 𝑦𝐺))
5523, 25, 543bitr3d 312 . . 3 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((𝐹𝑦) = 0𝑦𝐺))
5655rabbidva 3463 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉 ∣ (𝐹𝑦) = 0 } = {𝑦𝑉𝑦𝐺})
57 dfss7 4202 . . 3 (𝐺𝑉 ↔ {𝑦𝑉𝑦𝐺} = 𝐺)
5831, 57sylib 221 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉𝑦𝐺} = 𝐺)
5914, 56, 583eqtrd 2863 1 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  {crab 3137  Vcvv 3480   ⊆ wss 3919  {csn 4550   class class class wbr 5052   ↦ cmpt 5132  ◡ccnv 5541   “ cima 5545   Fn wfn 6338  –onto→wfo 6341  ‘cfv 6343  (class class class)co 7149   Er wer 8282  [cec 8283   / cqs 8284  Basecbs 16483  +gcplusg 16565  0gc0g 16713   /s cqus 16778  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273  NrmSGrpcnsg 18274   ~QG cqg 18275 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-ec 8287  df-qs 8291  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-nsg 18277  df-eqg 18278 This theorem is referenced by:  qusdimsum  31087
 Copyright terms: Public domain W3C validator