Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusker Structured version   Visualization version   GIF version

Theorem qusker 33306
Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusker.b 𝑉 = (Base‘𝑀)
qusker.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
qusker.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusker.1 0 = (0g𝑁)
Assertion
Ref Expression
qusker (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem qusker
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusker.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 qusker.b . . . . 5 𝑉 = (Base‘𝑀)
43a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑉 = (Base‘𝑀))
5 qusker.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7374 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) ∈ V)
8 nsgsubg 19065 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺 ∈ (SubGrp‘𝑀))
9 subgrcl 19039 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
108, 9syl 17 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑀 ∈ Grp)
112, 4, 5, 7, 10quslem 17442 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
12 fofn 6732 . . 3 (𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)) → 𝐹 Fn 𝑉)
13 fniniseg2 6990 . . 3 (𝐹 Fn 𝑉 → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
1411, 12, 133syl 18 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
15 qusker.1 . . . . . 6 0 = (0g𝑁)
16 eqid 2731 . . . . . . 7 (0g𝑀) = (0g𝑀)
171, 16qus0 19096 . . . . . 6 (𝐺 ∈ (NrmSGrp‘𝑀) → [(0g𝑀)](𝑀 ~QG 𝐺) = (0g𝑁))
1815, 17eqtr4id 2785 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 0 = [(0g𝑀)](𝑀 ~QG 𝐺))
19 eceq1 8656 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺))
20 ecexg 8621 . . . . . . 7 ((𝑀 ~QG 𝐺) ∈ V → [𝑦](𝑀 ~QG 𝐺) ∈ V)
216, 20ax-mp 5 . . . . . 6 [𝑦](𝑀 ~QG 𝐺) ∈ V
2219, 5, 21fvmpt 6924 . . . . 5 (𝑦𝑉 → (𝐹𝑦) = [𝑦](𝑀 ~QG 𝐺))
2318, 22eqeqan12d 2745 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
24 eqcom 2738 . . . . 5 ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 )
2524a1i 11 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 ))
26 simpl 482 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝐺 ∈ (NrmSGrp‘𝑀))
27 simpr 484 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝑦𝑉)
283, 16grpidcl 18873 . . . . . . 7 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑉)
2926, 10, 283syl 18 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (0g𝑀) ∈ 𝑉)
303subgss 19035 . . . . . . . . . . 11 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝑉)
318, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺𝑉)
32 eqid 2731 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
33 eqid 2731 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
34 eqid 2731 . . . . . . . . . . 11 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
353, 32, 33, 34eqgval 19084 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝐺𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3610, 31, 35syl2anc 584 . . . . . . . . 9 (𝐺 ∈ (NrmSGrp‘𝑀) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3736adantr 480 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
38 df-3an 1088 . . . . . . . . 9 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ (((0g𝑀) ∈ 𝑉𝑦𝑉) ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
3938biancomi 462 . . . . . . . 8 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)))
4037, 39bitrdi 287 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉))))
4140rbaibd 540 . . . . . 6 (((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
4226, 27, 29, 27, 41syl22anc 838 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
433, 34eqger 19085 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
448, 43syl 17 . . . . . . 7 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
4544adantr 480 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (𝑀 ~QG 𝐺) Er 𝑉)
4645, 27erth2 8672 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
4716, 32grpinvid 18907 . . . . . . . . 9 (𝑀 ∈ Grp → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4826, 10, 473syl 18 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4948oveq1d 7356 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
503, 33, 16grplid 18875 . . . . . . . 8 ((𝑀 ∈ Grp ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5110, 50sylan 580 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5249, 51eqtrd 2766 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = 𝑦)
5352eleq1d 2816 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺𝑦𝐺))
5442, 46, 533bitr3d 309 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ([(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺) ↔ 𝑦𝐺))
5523, 25, 543bitr3d 309 . . 3 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((𝐹𝑦) = 0𝑦𝐺))
5655rabbidva 3401 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉 ∣ (𝐹𝑦) = 0 } = {𝑦𝑉𝑦𝐺})
57 dfss7 4196 . . 3 (𝐺𝑉 ↔ {𝑦𝑉𝑦𝐺} = 𝐺)
5831, 57sylib 218 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉𝑦𝐺} = 𝐺)
5914, 56, 583eqtrd 2770 1 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  {csn 4571   class class class wbr 5086  cmpt 5167  ccnv 5610  cima 5614   Fn wfn 6471  ontowfo 6474  cfv 6476  (class class class)co 7341   Er wer 8614  [cec 8615   / cqs 8616  Basecbs 17115  +gcplusg 17156  0gc0g 17338   /s cqus 17404  Grpcgrp 18841  invgcminusg 18842  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-0g 17340  df-imas 17407  df-qus 17408  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-nsg 19032  df-eqg 19033
This theorem is referenced by:  qusdimsum  33633
  Copyright terms: Public domain W3C validator