Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusker Structured version   Visualization version   GIF version

Theorem qusker 30411
Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusker.b 𝑉 = (Base‘𝑀)
qusker.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
qusker.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusker.1 0 = (0g𝑁)
Assertion
Ref Expression
qusker (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem qusker
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusker.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 qusker.b . . . . 5 𝑉 = (Base‘𝑀)
43a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑉 = (Base‘𝑀))
5 qusker.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 6956 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) ∈ V)
8 nsgsubg 18014 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺 ∈ (SubGrp‘𝑀))
9 subgrcl 17987 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
108, 9syl 17 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑀 ∈ Grp)
112, 4, 5, 7, 10quslem 16593 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
12 fofn 6370 . . 3 (𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)) → 𝐹 Fn 𝑉)
13 fniniseg2 6606 . . 3 (𝐹 Fn 𝑉 → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
1411, 12, 133syl 18 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
15 eqid 2778 . . . . . . 7 (0g𝑀) = (0g𝑀)
161, 15qus0 18040 . . . . . 6 (𝐺 ∈ (NrmSGrp‘𝑀) → [(0g𝑀)](𝑀 ~QG 𝐺) = (0g𝑁))
17 qusker.1 . . . . . 6 0 = (0g𝑁)
1816, 17syl6reqr 2833 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 0 = [(0g𝑀)](𝑀 ~QG 𝐺))
19 eceq1 8066 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺))
20 ecexg 8032 . . . . . . 7 ((𝑀 ~QG 𝐺) ∈ V → [𝑦](𝑀 ~QG 𝐺) ∈ V)
216, 20ax-mp 5 . . . . . 6 [𝑦](𝑀 ~QG 𝐺) ∈ V
2219, 5, 21fvmpt 6544 . . . . 5 (𝑦𝑉 → (𝐹𝑦) = [𝑦](𝑀 ~QG 𝐺))
2318, 22eqeqan12d 2794 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
24 eqcom 2785 . . . . 5 ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 )
2524a1i 11 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 ))
26 simpl 476 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝐺 ∈ (NrmSGrp‘𝑀))
27 simpr 479 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝑦𝑉)
283, 15grpidcl 17841 . . . . . . 7 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑉)
2926, 10, 283syl 18 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (0g𝑀) ∈ 𝑉)
303subgss 17983 . . . . . . . . . . 11 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝑉)
318, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺𝑉)
32 eqid 2778 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
33 eqid 2778 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
34 eqid 2778 . . . . . . . . . . 11 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
353, 32, 33, 34eqgval 18031 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝐺𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3610, 31, 35syl2anc 579 . . . . . . . . 9 (𝐺 ∈ (NrmSGrp‘𝑀) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3736adantr 474 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
38 df-3an 1073 . . . . . . . . 9 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ (((0g𝑀) ∈ 𝑉𝑦𝑉) ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
3938biancomi 456 . . . . . . . 8 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)))
4037, 39syl6bb 279 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉))))
4140rbaibd 536 . . . . . 6 (((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
4226, 27, 29, 27, 41syl22anc 829 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
433, 34eqger 18032 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
448, 43syl 17 . . . . . . 7 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
4544adantr 474 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (𝑀 ~QG 𝐺) Er 𝑉)
4645, 27erth2 8076 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
4715, 32grpinvid 17867 . . . . . . . . 9 (𝑀 ∈ Grp → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4826, 10, 473syl 18 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4948oveq1d 6939 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
503, 33, 15grplid 17843 . . . . . . . 8 ((𝑀 ∈ Grp ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5110, 50sylan 575 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5249, 51eqtrd 2814 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = 𝑦)
5352eleq1d 2844 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺𝑦𝐺))
5442, 46, 533bitr3d 301 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ([(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺) ↔ 𝑦𝐺))
5523, 25, 543bitr3d 301 . . 3 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((𝐹𝑦) = 0𝑦𝐺))
5655rabbidva 3385 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉 ∣ (𝐹𝑦) = 0 } = {𝑦𝑉𝑦𝐺})
57 dfss7 4065 . . 3 (𝐺𝑉 ↔ {𝑦𝑉𝑦𝐺} = 𝐺)
5831, 57sylib 210 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉𝑦𝐺} = 𝐺)
5914, 56, 583eqtrd 2818 1 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  wss 3792  {csn 4398   class class class wbr 4888  cmpt 4967  ccnv 5356  cima 5360   Fn wfn 6132  ontowfo 6135  cfv 6137  (class class class)co 6924   Er wer 8025  [cec 8026   / cqs 8027  Basecbs 16259  +gcplusg 16342  0gc0g 16490   /s cqus 16555  Grpcgrp 17813  invgcminusg 17814  SubGrpcsubg 17976  NrmSGrpcnsg 17977   ~QG cqg 17978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-ec 8030  df-qs 8034  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-fz 12648  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-0g 16492  df-imas 16558  df-qus 16559  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-grp 17816  df-minusg 17817  df-subg 17979  df-nsg 17980  df-eqg 17981
This theorem is referenced by:  qusdimsum  30446
  Copyright terms: Public domain W3C validator