Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusker Structured version   Visualization version   GIF version

Theorem qusker 33377
Description: The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusker.b 𝑉 = (Base‘𝑀)
qusker.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
qusker.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusker.1 0 = (0g𝑁)
Assertion
Ref Expression
qusker (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem qusker
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusker.n . . . . 5 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
21a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
3 qusker.b . . . . 5 𝑉 = (Base‘𝑀)
43a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑉 = (Base‘𝑀))
5 qusker.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
6 ovex 7464 . . . . 5 (𝑀 ~QG 𝐺) ∈ V
76a1i 11 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) ∈ V)
8 nsgsubg 19176 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺 ∈ (SubGrp‘𝑀))
9 subgrcl 19149 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
108, 9syl 17 . . . 4 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝑀 ∈ Grp)
112, 4, 5, 7, 10quslem 17588 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
12 fofn 6822 . . 3 (𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)) → 𝐹 Fn 𝑉)
13 fniniseg2 7082 . . 3 (𝐹 Fn 𝑉 → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
1411, 12, 133syl 18 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = {𝑦𝑉 ∣ (𝐹𝑦) = 0 })
15 qusker.1 . . . . . 6 0 = (0g𝑁)
16 eqid 2737 . . . . . . 7 (0g𝑀) = (0g𝑀)
171, 16qus0 19207 . . . . . 6 (𝐺 ∈ (NrmSGrp‘𝑀) → [(0g𝑀)](𝑀 ~QG 𝐺) = (0g𝑁))
1815, 17eqtr4id 2796 . . . . 5 (𝐺 ∈ (NrmSGrp‘𝑀) → 0 = [(0g𝑀)](𝑀 ~QG 𝐺))
19 eceq1 8784 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺))
20 ecexg 8749 . . . . . . 7 ((𝑀 ~QG 𝐺) ∈ V → [𝑦](𝑀 ~QG 𝐺) ∈ V)
216, 20ax-mp 5 . . . . . 6 [𝑦](𝑀 ~QG 𝐺) ∈ V
2219, 5, 21fvmpt 7016 . . . . 5 (𝑦𝑉 → (𝐹𝑦) = [𝑦](𝑀 ~QG 𝐺))
2318, 22eqeqan12d 2751 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
24 eqcom 2744 . . . . 5 ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 )
2524a1i 11 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ( 0 = (𝐹𝑦) ↔ (𝐹𝑦) = 0 ))
26 simpl 482 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝐺 ∈ (NrmSGrp‘𝑀))
27 simpr 484 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → 𝑦𝑉)
283, 16grpidcl 18983 . . . . . . 7 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑉)
2926, 10, 283syl 18 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (0g𝑀) ∈ 𝑉)
303subgss 19145 . . . . . . . . . . 11 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝑉)
318, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐺𝑉)
32 eqid 2737 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
33 eqid 2737 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
34 eqid 2737 . . . . . . . . . . 11 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
353, 32, 33, 34eqgval 19195 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝐺𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3610, 31, 35syl2anc 584 . . . . . . . . 9 (𝐺 ∈ (NrmSGrp‘𝑀) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
3736adantr 480 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺)))
38 df-3an 1089 . . . . . . . . 9 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ (((0g𝑀) ∈ 𝑉𝑦𝑉) ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
3938biancomi 462 . . . . . . . 8 (((0g𝑀) ∈ 𝑉𝑦𝑉 ∧ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺) ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)))
4037, 39bitrdi 287 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺 ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉))))
4140rbaibd 540 . . . . . 6 (((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) ∧ ((0g𝑀) ∈ 𝑉𝑦𝑉)) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
4226, 27, 29, 27, 41syl22anc 839 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺))
433, 34eqger 19196 . . . . . . . 8 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
448, 43syl 17 . . . . . . 7 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝑉)
4544adantr 480 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (𝑀 ~QG 𝐺) Er 𝑉)
4645, 27erth2 8797 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(𝑀 ~QG 𝐺)𝑦 ↔ [(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺)))
4716, 32grpinvid 19017 . . . . . . . . 9 (𝑀 ∈ Grp → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4826, 10, 473syl 18 . . . . . . . 8 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((invg𝑀)‘(0g𝑀)) = (0g𝑀))
4948oveq1d 7446 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = ((0g𝑀)(+g𝑀)𝑦))
503, 33, 16grplid 18985 . . . . . . . 8 ((𝑀 ∈ Grp ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5110, 50sylan 580 . . . . . . 7 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((0g𝑀)(+g𝑀)𝑦) = 𝑦)
5249, 51eqtrd 2777 . . . . . 6 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → (((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) = 𝑦)
5352eleq1d 2826 . . . . 5 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((((invg𝑀)‘(0g𝑀))(+g𝑀)𝑦) ∈ 𝐺𝑦𝐺))
5442, 46, 533bitr3d 309 . . . 4 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ([(0g𝑀)](𝑀 ~QG 𝐺) = [𝑦](𝑀 ~QG 𝐺) ↔ 𝑦𝐺))
5523, 25, 543bitr3d 309 . . 3 ((𝐺 ∈ (NrmSGrp‘𝑀) ∧ 𝑦𝑉) → ((𝐹𝑦) = 0𝑦𝐺))
5655rabbidva 3443 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉 ∣ (𝐹𝑦) = 0 } = {𝑦𝑉𝑦𝐺})
57 dfss7 4251 . . 3 (𝐺𝑉 ↔ {𝑦𝑉𝑦𝐺} = 𝐺)
5831, 57sylib 218 . 2 (𝐺 ∈ (NrmSGrp‘𝑀) → {𝑦𝑉𝑦𝐺} = 𝐺)
5914, 56, 583eqtrd 2781 1 (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688   Fn wfn 6556  ontowfo 6559  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743   / cqs 8744  Basecbs 17247  +gcplusg 17297  0gc0g 17484   /s cqus 17550  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-nsg 19142  df-eqg 19143
This theorem is referenced by:  qusdimsum  33679
  Copyright terms: Public domain W3C validator