![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1lo12 | Structured version Visualization version GIF version |
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1lo1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
o1lo12.2 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
o1lo12.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝐵) |
Ref | Expression |
---|---|
o1lo12 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dm 15478 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ)) |
3 | lo1dm 15467 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ)) |
5 | o1lo1.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | 5 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ) |
7 | dmmptg 6241 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
9 | 8 | sseq1d 4013 | . . 3 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
10 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
11 | 5 | renegcld 11645 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
12 | 11 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
13 | o1lo12.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝑀 ∈ ℝ) |
15 | 14 | renegcld 11645 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → -𝑀 ∈ ℝ) |
16 | o1lo12.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝐵) | |
17 | 13 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℝ) |
18 | 17, 5 | lenegd 11797 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑀 ≤ 𝐵 ↔ -𝐵 ≤ -𝑀)) |
19 | 16, 18 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ -𝑀) |
20 | 19 | ad2ant2r 745 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → -𝐵 ≤ -𝑀) |
21 | 10, 12, 14, 15, 20 | ello1d 15471 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) |
22 | 5 | o1lo1 15485 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) |
23 | 22 | rbaibd 541 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
24 | 21, 23 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
25 | 24 | ex 413 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ ℝ → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)))) |
26 | 9, 25 | sylbid 239 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)))) |
27 | 2, 4, 26 | pm5.21ndd 380 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 ℝcr 11111 ≤ cle 11253 -cneg 11449 𝑂(1)co1 15434 ≤𝑂(1)clo1 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-ico 13334 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-o1 15438 df-lo1 15439 |
This theorem is referenced by: dirith2 27255 vmalogdivsum2 27265 pntrlog2bndlem4 27307 |
Copyright terms: Public domain | W3C validator |