Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1lo12 | Structured version Visualization version GIF version |
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1lo1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
o1lo12.2 | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
o1lo12.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝐵) |
Ref | Expression |
---|---|
o1lo12 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dm 15167 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ)) |
3 | lo1dm 15156 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ)) |
5 | o1lo1.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | 5 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ) |
7 | dmmptg 6134 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
9 | 8 | sseq1d 3948 | . . 3 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ)) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
11 | 5 | renegcld 11332 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
12 | 11 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
13 | o1lo12.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → 𝑀 ∈ ℝ) |
15 | 14 | renegcld 11332 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → -𝑀 ∈ ℝ) |
16 | o1lo12.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝐵) | |
17 | 13 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℝ) |
18 | 17, 5 | lenegd 11484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑀 ≤ 𝐵 ↔ -𝐵 ≤ -𝑀)) |
19 | 16, 18 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ -𝑀) |
20 | 19 | ad2ant2r 743 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ⊆ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → -𝐵 ≤ -𝑀) |
21 | 10, 12, 14, 15, 20 | ello1d 15160 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) |
22 | 5 | o1lo1 15174 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) |
23 | 22 | rbaibd 540 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
24 | 21, 23 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ⊆ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ ℝ → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)))) |
26 | 9, 25 | sylbid 239 | . 2 ⊢ (𝜑 → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)))) |
27 | 2, 4, 26 | pm5.21ndd 380 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ℝcr 10801 ≤ cle 10941 -cneg 11136 𝑂(1)co1 15123 ≤𝑂(1)clo1 15124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-o1 15127 df-lo1 15128 |
This theorem is referenced by: dirith2 26581 vmalogdivsum2 26591 pntrlog2bndlem4 26633 |
Copyright terms: Public domain | W3C validator |