MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo12 Structured version   Visualization version   GIF version

Theorem o1lo12 15486
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
o1lo12.2 (𝜑𝑀 ∈ ℝ)
o1lo12.3 ((𝜑𝑥𝐴) → 𝑀𝐵)
Assertion
Ref Expression
o1lo12 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo12
StepHypRef Expression
1 o1dm 15478 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 15467 . . 3 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
5 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
7 dmmptg 6241 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
86, 7syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
98sseq1d 4013 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
10 simpr 485 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
115renegcld 11645 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
1211adantlr 713 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
13 o1lo12.2 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1413adantr 481 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝑀 ∈ ℝ)
1514renegcld 11645 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → -𝑀 ∈ ℝ)
16 o1lo12.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀𝐵)
1713adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℝ)
1817, 5lenegd 11797 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑀𝐵 ↔ -𝐵 ≤ -𝑀))
1916, 18mpbid 231 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ≤ -𝑀)
2019ad2ant2r 745 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → -𝐵 ≤ -𝑀)
2110, 12, 14, 15, 20ello1d 15471 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))
225o1lo1 15485 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
2322rbaibd 541 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
2421, 23syldan 591 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
2524ex 413 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1))))
269, 25sylbid 239 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1))))
272, 4, 26pm5.21ndd 380 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wss 3948   class class class wbr 5148  cmpt 5231  dom cdm 5676  cr 11111  cle 11253  -cneg 11449  𝑂(1)co1 15434  ≤𝑂(1)clo1 15435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-ico 13334  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-o1 15438  df-lo1 15439
This theorem is referenced by:  dirith2  27255  vmalogdivsum2  27265  pntrlog2bndlem4  27307
  Copyright terms: Public domain W3C validator