MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo12 Structured version   Visualization version   GIF version

Theorem o1lo12 15522
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
o1lo12.2 (𝜑𝑀 ∈ ℝ)
o1lo12.3 ((𝜑𝑥𝐴) → 𝑀𝐵)
Assertion
Ref Expression
o1lo12 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo12
StepHypRef Expression
1 o1dm 15514 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 15503 . . 3 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
5 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
7 dmmptg 6251 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
86, 7syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
98sseq1d 4013 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
10 simpr 483 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
115renegcld 11679 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
1211adantlr 713 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
13 o1lo12.2 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1413adantr 479 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝑀 ∈ ℝ)
1514renegcld 11679 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → -𝑀 ∈ ℝ)
16 o1lo12.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑀𝐵)
1713adantr 479 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑀 ∈ ℝ)
1817, 5lenegd 11831 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑀𝐵 ↔ -𝐵 ≤ -𝑀))
1916, 18mpbid 231 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ≤ -𝑀)
2019ad2ant2r 745 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑥𝐴𝑀𝑥)) → -𝐵 ≤ -𝑀)
2110, 12, 14, 15, 20ello1d 15507 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))
225o1lo1 15521 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
2322rbaibd 539 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
2421, 23syldan 589 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
2524ex 411 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1))))
269, 25sylbid 239 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1))))
272, 4, 26pm5.21ndd 378 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  wss 3949   class class class wbr 5152  cmpt 5235  dom cdm 5682  cr 11145  cle 11287  -cneg 11483  𝑂(1)co1 15470  ≤𝑂(1)clo1 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ico 13370  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-o1 15474  df-lo1 15475
This theorem is referenced by:  dirith2  27481  vmalogdivsum2  27491  pntrlog2bndlem4  27533
  Copyright terms: Public domain W3C validator