![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsqueeze | Structured version Visualization version GIF version |
Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
qsqueeze | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10242 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
2 | ltnle 10319 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) | |
3 | 1, 2 | mpan 670 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) |
4 | qbtwnre 12235 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) | |
5 | 1, 4 | mp3an1 1559 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) |
6 | 5 | ex 397 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴))) |
7 | qre 11996 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
8 | ltnsym 10337 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < 𝑥 → ¬ 𝑥 < 𝐴)) | |
9 | 8 | con2d 131 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
10 | 7, 9 | sylan2 580 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
11 | 10 | anim2d 599 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → ((0 < 𝑥 ∧ 𝑥 < 𝐴) → (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
12 | 11 | reximdva 3165 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
13 | 6, 12 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
14 | 3, 13 | sylbird 250 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
15 | rexanali 3146 | . . . . . 6 ⊢ (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥) ↔ ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) | |
16 | 14, 15 | syl6ib 241 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥))) |
17 | 16 | con4d 115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 ≤ 0)) |
18 | 17 | imp 393 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
19 | 18 | 3adant2 1125 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
20 | letri3 10325 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
21 | 1, 20 | mpan2 671 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
22 | 21 | rbaibd 530 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
23 | 22 | 3adant3 1126 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
24 | 19, 23 | mpbird 247 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 class class class wbr 4786 ℝcr 10137 0cc0 10138 < clt 10276 ≤ cle 10277 ℚcq 11991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |