Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qsqueeze | Structured version Visualization version GIF version |
Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
qsqueeze | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11078 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
2 | ltnle 11155 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) | |
3 | 1, 2 | mpan 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) |
4 | qbtwnre 13034 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) | |
5 | 1, 4 | mp3an1 1447 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) |
6 | 5 | ex 413 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴))) |
7 | qre 12794 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
8 | ltnsym 11174 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < 𝑥 → ¬ 𝑥 < 𝐴)) | |
9 | 8 | con2d 134 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
10 | 7, 9 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
11 | 10 | anim2d 612 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → ((0 < 𝑥 ∧ 𝑥 < 𝐴) → (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
12 | 11 | reximdva 3161 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
13 | 6, 12 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
14 | 3, 13 | sylbird 259 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
15 | rexanali 3101 | . . . . . 6 ⊢ (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥) ↔ ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) | |
16 | 14, 15 | syl6ib 250 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥))) |
17 | 16 | con4d 115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 ≤ 0)) |
18 | 17 | imp 407 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
19 | 18 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
20 | letri3 11161 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
21 | 1, 20 | mpan2 688 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
22 | 21 | rbaibd 541 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
23 | 22 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
24 | 19, 23 | mpbird 256 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 class class class wbr 5092 ℝcr 10971 0cc0 10972 < clt 11110 ≤ cle 11111 ℚcq 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |