![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsqueeze | Structured version Visualization version GIF version |
Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
qsqueeze | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11220 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
2 | ltnle 11297 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) | |
3 | 1, 2 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) |
4 | qbtwnre 13182 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) | |
5 | 1, 4 | mp3an1 1446 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) |
6 | 5 | ex 411 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴))) |
7 | qre 12941 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
8 | ltnsym 11316 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < 𝑥 → ¬ 𝑥 < 𝐴)) | |
9 | 8 | con2d 134 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
10 | 7, 9 | sylan2 591 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
11 | 10 | anim2d 610 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → ((0 < 𝑥 ∧ 𝑥 < 𝐴) → (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
12 | 11 | reximdva 3166 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
13 | 6, 12 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
14 | 3, 13 | sylbird 259 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
15 | rexanali 3100 | . . . . . 6 ⊢ (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥) ↔ ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) | |
16 | 14, 15 | imbitrdi 250 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥))) |
17 | 16 | con4d 115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 ≤ 0)) |
18 | 17 | imp 405 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
19 | 18 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
20 | letri3 11303 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
21 | 1, 20 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
22 | 21 | rbaibd 539 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
23 | 22 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
24 | 19, 23 | mpbird 256 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 class class class wbr 5147 ℝcr 11111 0cc0 11112 < clt 11252 ≤ cle 11253 ℚcq 12936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |