| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsqueeze | Structured version Visualization version GIF version | ||
| Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| qsqueeze | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 2 | ltnle 11253 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) | |
| 3 | 1, 2 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) |
| 4 | qbtwnre 13159 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) | |
| 5 | 1, 4 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴)) |
| 6 | 5 | ex 412 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴))) |
| 7 | qre 12912 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 8 | ltnsym 11272 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < 𝑥 → ¬ 𝑥 < 𝐴)) | |
| 9 | 8 | con2d 134 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
| 10 | 7, 9 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → (𝑥 < 𝐴 → ¬ 𝐴 < 𝑥)) |
| 11 | 10 | anim2d 612 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℚ) → ((0 < 𝑥 ∧ 𝑥 < 𝐴) → (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
| 12 | 11 | reximdva 3146 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ 𝑥 < 𝐴) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
| 13 | 6, 12 | syld 47 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
| 14 | 3, 13 | sylbird 260 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥))) |
| 15 | rexanali 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ ℚ (0 < 𝑥 ∧ ¬ 𝐴 < 𝑥) ↔ ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) | |
| 16 | 14, 15 | imbitrdi 251 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ≤ 0 → ¬ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥))) |
| 17 | 16 | con4d 115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥) → 𝐴 ≤ 0)) |
| 18 | 17 | imp 406 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
| 19 | 18 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
| 20 | letri3 11259 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) | |
| 21 | 1, 20 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
| 22 | 21 | rbaibd 540 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
| 23 | 22 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ 𝐴 ≤ 0)) |
| 24 | 19, 23 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ≤ cle 11209 ℚcq 12907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |