MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc2 Structured version   Visualization version   GIF version

Theorem incexc2 15886
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Distinct variable group:   𝑘,𝑛,𝑠,𝐴

Proof of Theorem incexc2
StepHypRef Expression
1 incexc 15885 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
2 hashcl 14405 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
32ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℕ0)
43nn0zd 12665 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℤ)
5 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 elpwi 4629 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝐴𝑘𝐴)
7 ssdomg 9060 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝑘𝐴𝑘𝐴))
87imp 406 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘𝐴)
95, 6, 8syl2an 595 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘𝐴)
10 hashdomi 14429 . . . . . . . . . . 11 (𝑘𝐴 → (♯‘𝑘) ≤ (♯‘𝐴))
119, 10syl 17 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝑘) ≤ (♯‘𝐴))
12 fznn 13652 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ((♯‘𝑘) ∈ ℕ ∧ (♯‘𝑘) ≤ (♯‘𝐴))))
1312rbaibd 540 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝑘) ≤ (♯‘𝐴)) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
144, 11, 13syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
15 ssfi 9240 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘 ∈ Fin)
165, 6, 15syl2an 595 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘 ∈ Fin)
17 hashnncl 14415 . . . . . . . . . 10 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1914, 18bitr2d 280 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (𝑘 ≠ ∅ ↔ (♯‘𝑘) ∈ (1...(♯‘𝐴))))
20 df-ne 2947 . . . . . . . 8 (𝑘 ≠ ∅ ↔ ¬ 𝑘 = ∅)
21 risset 3239 . . . . . . . 8 ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2219, 20, 213bitr3g 313 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 = ∅ ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘)))
23 velsn 4664 . . . . . . . 8 (𝑘 ∈ {∅} ↔ 𝑘 = ∅)
2423notbii 320 . . . . . . 7 𝑘 ∈ {∅} ↔ ¬ 𝑘 = ∅)
25 eqcom 2747 . . . . . . . 8 ((♯‘𝑘) = 𝑛𝑛 = (♯‘𝑘))
2625rexbii 3100 . . . . . . 7 (∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛 ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2722, 24, 263bitr4g 314 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 ∈ {∅} ↔ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛))
2827rabbidva 3450 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛})
29 dfdif2 3985 . . . . 5 (𝒫 𝐴 ∖ {∅}) = {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}}
30 iunrab 5075 . . . . 5 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛}
3128, 29, 303eqtr4g 2805 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) = 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
3231sumeq1d 15748 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
331, 32eqtrd 2780 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
34 fzfid 14024 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1...(♯‘𝐴)) ∈ Fin)
35 simpll 766 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐴 ∈ Fin)
36 pwfi 9385 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
3735, 36sylib 218 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝒫 𝐴 ∈ Fin)
38 ssrab2 4103 . . . 4 {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴
39 ssfi 9240 . . . 4 ((𝒫 𝐴 ∈ Fin ∧ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
4037, 38, 39sylancl 585 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
41 fveqeq2 6929 . . . . . . . . 9 (𝑘 = 𝑠 → ((♯‘𝑘) = 𝑛 ↔ (♯‘𝑠) = 𝑛))
4241elrab 3708 . . . . . . . 8 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ↔ (𝑠 ∈ 𝒫 𝐴 ∧ (♯‘𝑠) = 𝑛))
4342simprbi 496 . . . . . . 7 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → (♯‘𝑠) = 𝑛)
4443adantl 481 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) = 𝑛)
4544ralrimiva 3152 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
4645ralrimiva 3152 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
47 invdisj 5152 . . . 4 (∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4846, 47syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4944oveq1d 7463 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) − 1) = (𝑛 − 1))
5049oveq2d 7464 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑((♯‘𝑠) − 1)) = (-1↑(𝑛 − 1)))
5150oveq1d 7463 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
52 1cnd 11285 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 1 ∈ ℂ)
5352negcld 11634 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → -1 ∈ ℂ)
54 elfznn 13613 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
5554adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
56 nnm1nn0 12594 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5755, 56syl 17 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑛 − 1) ∈ ℕ0)
5853, 57expcld 14196 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (-1↑(𝑛 − 1)) ∈ ℂ)
5958adantr 480 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑(𝑛 − 1)) ∈ ℂ)
60 unifi 9412 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6160ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
6255adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑛 ∈ ℕ)
6344, 62eqeltrd 2844 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) ∈ ℕ)
6435adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
65 elrabi 3703 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → 𝑠 ∈ 𝒫 𝐴)
6665adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ 𝒫 𝐴)
67 elpwi 4629 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
6866, 67syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠𝐴)
6964, 68ssfid 9329 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
70 hashnncl 14415 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7169, 70syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7263, 71mpbid 232 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ≠ ∅)
73 intssuni 4994 . . . . . . . . . . 11 (𝑠 ≠ ∅ → 𝑠 𝑠)
7472, 73syl 17 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝑠)
7568unissd 4941 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7674, 75sstrd 4019 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7761, 76ssfid 9329 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
78 hashcl 14405 . . . . . . . 8 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
7977, 78syl 17 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℕ0)
8079nn0cnd 12615 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℂ)
8159, 80mulcld 11310 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8251, 81eqeltrd 2844 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8382anasss 466 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ (𝑛 ∈ (1...(♯‘𝐴)) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8434, 40, 48, 83fsumiun 15869 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
8551sumeq2dv 15750 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8640, 58, 80fsummulc2 15832 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8785, 86eqtr4d 2783 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8887sumeq2dv 15750 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8933, 84, 883eqtrd 2784 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   cint 4970   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cfv 6573  (class class class)co 7448  cdom 9001  Fincfn 9003  cc 11182  1c1 11185   · cmul 11189  cle 11325  cmin 11520  -cneg 11521  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  cexp 14112  chash 14379  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator