MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc2 Structured version   Visualization version   GIF version

Theorem incexc2 15196
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Distinct variable group:   𝑘,𝑛,𝑠,𝐴

Proof of Theorem incexc2
StepHypRef Expression
1 incexc 15195 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
2 hashcl 13725 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
32ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℕ0)
43nn0zd 12085 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℤ)
5 simpl 486 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 elpwi 4532 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝐴𝑘𝐴)
7 ssdomg 8552 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝑘𝐴𝑘𝐴))
87imp 410 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘𝐴)
95, 6, 8syl2an 598 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘𝐴)
10 hashdomi 13749 . . . . . . . . . . 11 (𝑘𝐴 → (♯‘𝑘) ≤ (♯‘𝐴))
119, 10syl 17 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝑘) ≤ (♯‘𝐴))
12 fznn 12982 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ((♯‘𝑘) ∈ ℕ ∧ (♯‘𝑘) ≤ (♯‘𝐴))))
1312rbaibd 544 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝑘) ≤ (♯‘𝐴)) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
144, 11, 13syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
15 ssfi 8736 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘 ∈ Fin)
165, 6, 15syl2an 598 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘 ∈ Fin)
17 hashnncl 13735 . . . . . . . . . 10 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1914, 18bitr2d 283 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (𝑘 ≠ ∅ ↔ (♯‘𝑘) ∈ (1...(♯‘𝐴))))
20 df-ne 3015 . . . . . . . 8 (𝑘 ≠ ∅ ↔ ¬ 𝑘 = ∅)
21 risset 3260 . . . . . . . 8 ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2219, 20, 213bitr3g 316 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 = ∅ ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘)))
23 velsn 4567 . . . . . . . 8 (𝑘 ∈ {∅} ↔ 𝑘 = ∅)
2423notbii 323 . . . . . . 7 𝑘 ∈ {∅} ↔ ¬ 𝑘 = ∅)
25 eqcom 2831 . . . . . . . 8 ((♯‘𝑘) = 𝑛𝑛 = (♯‘𝑘))
2625rexbii 3242 . . . . . . 7 (∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛 ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2722, 24, 263bitr4g 317 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 ∈ {∅} ↔ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛))
2827rabbidva 3464 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛})
29 dfdif2 3929 . . . . 5 (𝒫 𝐴 ∖ {∅}) = {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}}
30 iunrab 4963 . . . . 5 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛}
3128, 29, 303eqtr4g 2884 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) = 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
3231sumeq1d 15061 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
331, 32eqtrd 2859 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
34 fzfid 13348 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1...(♯‘𝐴)) ∈ Fin)
35 simpll 766 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐴 ∈ Fin)
36 pwfi 8817 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
3735, 36sylib 221 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝒫 𝐴 ∈ Fin)
38 ssrab2 4043 . . . 4 {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴
39 ssfi 8736 . . . 4 ((𝒫 𝐴 ∈ Fin ∧ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
4037, 38, 39sylancl 589 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
41 fveqeq2 6671 . . . . . . . . 9 (𝑘 = 𝑠 → ((♯‘𝑘) = 𝑛 ↔ (♯‘𝑠) = 𝑛))
4241elrab 3667 . . . . . . . 8 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ↔ (𝑠 ∈ 𝒫 𝐴 ∧ (♯‘𝑠) = 𝑛))
4342simprbi 500 . . . . . . 7 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → (♯‘𝑠) = 𝑛)
4443adantl 485 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) = 𝑛)
4544ralrimiva 3177 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
4645ralrimiva 3177 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
47 invdisj 5037 . . . 4 (∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4846, 47syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4944oveq1d 7165 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) − 1) = (𝑛 − 1))
5049oveq2d 7166 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑((♯‘𝑠) − 1)) = (-1↑(𝑛 − 1)))
5150oveq1d 7165 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
52 1cnd 10635 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 1 ∈ ℂ)
5352negcld 10983 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → -1 ∈ ℂ)
54 elfznn 12943 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
5554adantl 485 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
56 nnm1nn0 11938 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5755, 56syl 17 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑛 − 1) ∈ ℕ0)
5853, 57expcld 13518 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (-1↑(𝑛 − 1)) ∈ ℂ)
5958adantr 484 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑(𝑛 − 1)) ∈ ℂ)
60 unifi 8811 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6160ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
6255adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑛 ∈ ℕ)
6344, 62eqeltrd 2916 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) ∈ ℕ)
6435adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
65 elrabi 3662 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → 𝑠 ∈ 𝒫 𝐴)
6665adantl 485 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ 𝒫 𝐴)
67 elpwi 4532 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
6866, 67syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠𝐴)
6964, 68ssfid 8739 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
70 hashnncl 13735 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7169, 70syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7263, 71mpbid 235 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ≠ ∅)
73 intssuni 4885 . . . . . . . . . . 11 (𝑠 ≠ ∅ → 𝑠 𝑠)
7472, 73syl 17 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝑠)
7568unissd 4835 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7674, 75sstrd 3964 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7761, 76ssfid 8739 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
78 hashcl 13725 . . . . . . . 8 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
7977, 78syl 17 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℕ0)
8079nn0cnd 11957 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℂ)
8159, 80mulcld 10660 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8251, 81eqeltrd 2916 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8382anasss 470 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ (𝑛 ∈ (1...(♯‘𝐴)) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8434, 40, 48, 83fsumiun 15179 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
8551sumeq2dv 15063 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8640, 58, 80fsummulc2 15142 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8785, 86eqtr4d 2862 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8887sumeq2dv 15063 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8933, 84, 883eqtrd 2863 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  cdif 3917  wss 3920  c0 4277  𝒫 cpw 4523  {csn 4551   cuni 4825   cint 4863   ciun 4906  Disj wdisj 5018   class class class wbr 5053  cfv 6344  (class class class)co 7150  cdom 8504  Fincfn 8506  cc 10534  1c1 10537   · cmul 10541  cle 10675  cmin 10869  -cneg 10870  cn 11637  0cn0 11897  cz 11981  ...cfz 12897  cexp 13437  chash 13698  Σcsu 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-inf2 9102  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8904  df-oi 8972  df-dju 9328  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-n0 11898  df-xnn0 11968  df-z 11982  df-uz 12244  df-rp 12390  df-fz 12898  df-fzo 13041  df-seq 13377  df-exp 13438  df-hash 13699  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator