MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc2 Structured version   Visualization version   GIF version

Theorem incexc2 15550
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Distinct variable group:   𝑘,𝑛,𝑠,𝐴

Proof of Theorem incexc2
StepHypRef Expression
1 incexc 15549 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
2 hashcl 14071 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
32ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℕ0)
43nn0zd 12424 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℤ)
5 simpl 483 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 elpwi 4542 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝐴𝑘𝐴)
7 ssdomg 8786 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝑘𝐴𝑘𝐴))
87imp 407 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘𝐴)
95, 6, 8syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘𝐴)
10 hashdomi 14095 . . . . . . . . . . 11 (𝑘𝐴 → (♯‘𝑘) ≤ (♯‘𝐴))
119, 10syl 17 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝑘) ≤ (♯‘𝐴))
12 fznn 13324 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ((♯‘𝑘) ∈ ℕ ∧ (♯‘𝑘) ≤ (♯‘𝐴))))
1312rbaibd 541 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝑘) ≤ (♯‘𝐴)) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
144, 11, 13syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
15 ssfi 8956 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘 ∈ Fin)
165, 6, 15syl2an 596 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘 ∈ Fin)
17 hashnncl 14081 . . . . . . . . . 10 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1914, 18bitr2d 279 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (𝑘 ≠ ∅ ↔ (♯‘𝑘) ∈ (1...(♯‘𝐴))))
20 df-ne 2944 . . . . . . . 8 (𝑘 ≠ ∅ ↔ ¬ 𝑘 = ∅)
21 risset 3194 . . . . . . . 8 ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2219, 20, 213bitr3g 313 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 = ∅ ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘)))
23 velsn 4577 . . . . . . . 8 (𝑘 ∈ {∅} ↔ 𝑘 = ∅)
2423notbii 320 . . . . . . 7 𝑘 ∈ {∅} ↔ ¬ 𝑘 = ∅)
25 eqcom 2745 . . . . . . . 8 ((♯‘𝑘) = 𝑛𝑛 = (♯‘𝑘))
2625rexbii 3181 . . . . . . 7 (∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛 ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2722, 24, 263bitr4g 314 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 ∈ {∅} ↔ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛))
2827rabbidva 3413 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛})
29 dfdif2 3896 . . . . 5 (𝒫 𝐴 ∖ {∅}) = {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}}
30 iunrab 4982 . . . . 5 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛}
3128, 29, 303eqtr4g 2803 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) = 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
3231sumeq1d 15413 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
331, 32eqtrd 2778 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
34 fzfid 13693 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1...(♯‘𝐴)) ∈ Fin)
35 simpll 764 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐴 ∈ Fin)
36 pwfi 8961 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
3735, 36sylib 217 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝒫 𝐴 ∈ Fin)
38 ssrab2 4013 . . . 4 {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴
39 ssfi 8956 . . . 4 ((𝒫 𝐴 ∈ Fin ∧ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
4037, 38, 39sylancl 586 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
41 fveqeq2 6783 . . . . . . . . 9 (𝑘 = 𝑠 → ((♯‘𝑘) = 𝑛 ↔ (♯‘𝑠) = 𝑛))
4241elrab 3624 . . . . . . . 8 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ↔ (𝑠 ∈ 𝒫 𝐴 ∧ (♯‘𝑠) = 𝑛))
4342simprbi 497 . . . . . . 7 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → (♯‘𝑠) = 𝑛)
4443adantl 482 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) = 𝑛)
4544ralrimiva 3103 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
4645ralrimiva 3103 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
47 invdisj 5058 . . . 4 (∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4846, 47syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4944oveq1d 7290 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) − 1) = (𝑛 − 1))
5049oveq2d 7291 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑((♯‘𝑠) − 1)) = (-1↑(𝑛 − 1)))
5150oveq1d 7290 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
52 1cnd 10970 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 1 ∈ ℂ)
5352negcld 11319 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → -1 ∈ ℂ)
54 elfznn 13285 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
5554adantl 482 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
56 nnm1nn0 12274 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5755, 56syl 17 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑛 − 1) ∈ ℕ0)
5853, 57expcld 13864 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (-1↑(𝑛 − 1)) ∈ ℂ)
5958adantr 481 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑(𝑛 − 1)) ∈ ℂ)
60 unifi 9108 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6160ad2antrr 723 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
6255adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑛 ∈ ℕ)
6344, 62eqeltrd 2839 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) ∈ ℕ)
6435adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
65 elrabi 3618 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → 𝑠 ∈ 𝒫 𝐴)
6665adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ 𝒫 𝐴)
67 elpwi 4542 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
6866, 67syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠𝐴)
6964, 68ssfid 9042 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
70 hashnncl 14081 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7169, 70syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7263, 71mpbid 231 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ≠ ∅)
73 intssuni 4901 . . . . . . . . . . 11 (𝑠 ≠ ∅ → 𝑠 𝑠)
7472, 73syl 17 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝑠)
7568unissd 4849 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7674, 75sstrd 3931 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7761, 76ssfid 9042 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
78 hashcl 14071 . . . . . . . 8 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
7977, 78syl 17 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℕ0)
8079nn0cnd 12295 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℂ)
8159, 80mulcld 10995 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8251, 81eqeltrd 2839 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8382anasss 467 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ (𝑛 ∈ (1...(♯‘𝐴)) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8434, 40, 48, 83fsumiun 15533 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
8551sumeq2dv 15415 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8640, 58, 80fsummulc2 15496 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8785, 86eqtr4d 2781 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8887sumeq2dv 15415 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8933, 84, 883eqtrd 2782 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   cint 4879   ciun 4924  Disj wdisj 5039   class class class wbr 5074  cfv 6433  (class class class)co 7275  cdom 8731  Fincfn 8733  cc 10869  1c1 10872   · cmul 10876  cle 11010  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  chash 14044  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator