MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc2 Structured version   Visualization version   GIF version

Theorem incexc2 15185
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Distinct variable group:   𝑘,𝑛,𝑠,𝐴

Proof of Theorem incexc2
StepHypRef Expression
1 incexc 15184 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
2 hashcl 13713 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
32ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℕ0)
43nn0zd 12073 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝐴) ∈ ℤ)
5 simpl 486 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 elpwi 4506 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝐴𝑘𝐴)
7 ssdomg 8538 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝑘𝐴𝑘𝐴))
87imp 410 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘𝐴)
95, 6, 8syl2an 598 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘𝐴)
10 hashdomi 13737 . . . . . . . . . . 11 (𝑘𝐴 → (♯‘𝑘) ≤ (♯‘𝐴))
119, 10syl 17 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (♯‘𝑘) ≤ (♯‘𝐴))
12 fznn 12970 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ((♯‘𝑘) ∈ ℕ ∧ (♯‘𝑘) ≤ (♯‘𝐴))))
1312rbaibd 544 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝑘) ≤ (♯‘𝐴)) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
144, 11, 13syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ (♯‘𝑘) ∈ ℕ))
15 ssfi 8722 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘 ∈ Fin)
165, 6, 15syl2an 598 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘 ∈ Fin)
17 hashnncl 13723 . . . . . . . . . 10 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1914, 18bitr2d 283 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (𝑘 ≠ ∅ ↔ (♯‘𝑘) ∈ (1...(♯‘𝐴))))
20 df-ne 2988 . . . . . . . 8 (𝑘 ≠ ∅ ↔ ¬ 𝑘 = ∅)
21 risset 3226 . . . . . . . 8 ((♯‘𝑘) ∈ (1...(♯‘𝐴)) ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2219, 20, 213bitr3g 316 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 = ∅ ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘)))
23 velsn 4541 . . . . . . . 8 (𝑘 ∈ {∅} ↔ 𝑘 = ∅)
2423notbii 323 . . . . . . 7 𝑘 ∈ {∅} ↔ ¬ 𝑘 = ∅)
25 eqcom 2805 . . . . . . . 8 ((♯‘𝑘) = 𝑛𝑛 = (♯‘𝑘))
2625rexbii 3210 . . . . . . 7 (∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛 ↔ ∃𝑛 ∈ (1...(♯‘𝐴))𝑛 = (♯‘𝑘))
2722, 24, 263bitr4g 317 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 ∈ {∅} ↔ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛))
2827rabbidva 3425 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛})
29 dfdif2 3890 . . . . 5 (𝒫 𝐴 ∖ {∅}) = {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}}
30 iunrab 4939 . . . . 5 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(♯‘𝐴))(♯‘𝑘) = 𝑛}
3128, 29, 303eqtr4g 2858 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) = 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
3231sumeq1d 15050 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
331, 32eqtrd 2833 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
34 fzfid 13336 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1...(♯‘𝐴)) ∈ Fin)
35 simpll 766 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝐴 ∈ Fin)
36 pwfi 8803 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
3735, 36sylib 221 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝒫 𝐴 ∈ Fin)
38 ssrab2 4007 . . . 4 {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴
39 ssfi 8722 . . . 4 ((𝒫 𝐴 ∈ Fin ∧ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ⊆ 𝒫 𝐴) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
4037, 38, 39sylancl 589 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ∈ Fin)
41 fveqeq2 6654 . . . . . . . . 9 (𝑘 = 𝑠 → ((♯‘𝑘) = 𝑛 ↔ (♯‘𝑠) = 𝑛))
4241elrab 3628 . . . . . . . 8 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ↔ (𝑠 ∈ 𝒫 𝐴 ∧ (♯‘𝑠) = 𝑛))
4342simprbi 500 . . . . . . 7 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → (♯‘𝑠) = 𝑛)
4443adantl 485 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) = 𝑛)
4544ralrimiva 3149 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
4645ralrimiva 3149 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛)
47 invdisj 5014 . . . 4 (∀𝑛 ∈ (1...(♯‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘𝑠) = 𝑛Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4846, 47syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})
4944oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) − 1) = (𝑛 − 1))
5049oveq2d 7151 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑((♯‘𝑠) − 1)) = (-1↑(𝑛 − 1)))
5150oveq1d 7150 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
52 1cnd 10625 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 1 ∈ ℂ)
5352negcld 10973 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → -1 ∈ ℂ)
54 elfznn 12931 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
5554adantl 485 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ ℕ)
56 nnm1nn0 11926 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5755, 56syl 17 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑛 − 1) ∈ ℕ0)
5853, 57expcld 13506 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (-1↑(𝑛 − 1)) ∈ ℂ)
5958adantr 484 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (-1↑(𝑛 − 1)) ∈ ℂ)
60 unifi 8797 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6160ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
6255adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑛 ∈ ℕ)
6344, 62eqeltrd 2890 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘𝑠) ∈ ℕ)
6435adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
65 elrabi 3623 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} → 𝑠 ∈ 𝒫 𝐴)
6665adantl 485 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ 𝒫 𝐴)
67 elpwi 4506 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
6866, 67syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠𝐴)
6964, 68ssfid 8725 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
70 hashnncl 13723 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7169, 70syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7263, 71mpbid 235 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ≠ ∅)
73 intssuni 4860 . . . . . . . . . . 11 (𝑠 ≠ ∅ → 𝑠 𝑠)
7472, 73syl 17 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝑠)
7568unissd 4810 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7674, 75sstrd 3925 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 𝐴)
7761, 76ssfid 8725 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
78 hashcl 13713 . . . . . . . 8 ( 𝑠 ∈ Fin → (♯‘ 𝑠) ∈ ℕ0)
7977, 78syl 17 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℕ0)
8079nn0cnd 11945 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → (♯‘ 𝑠) ∈ ℂ)
8159, 80mulcld 10650 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8251, 81eqeltrd 2890 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛}) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8382anasss 470 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ (𝑛 ∈ (1...(♯‘𝐴)) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛})) → ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) ∈ ℂ)
8434, 40, 48, 83fsumiun 15168 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 𝑛 ∈ (1...(♯‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)))
8551sumeq2dv 15052 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8640, 58, 80fsummulc2 15131 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (♯‘ 𝑠)))
8785, 86eqtr4d 2836 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8887sumeq2dv 15052 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑛 ∈ (1...(♯‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} ((-1↑((♯‘𝑠) − 1)) · (♯‘ 𝑠)) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
8933, 84, 883eqtrd 2837 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑛 ∈ (1...(♯‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (♯‘𝑘) = 𝑛} (♯‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   cint 4838   ciun 4881  Disj wdisj 4995   class class class wbr 5030  cfv 6324  (class class class)co 7135  cdom 8490  Fincfn 8492  cc 10524  1c1 10527   · cmul 10531  cle 10665  cmin 10859  -cneg 10860  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  chash 13686  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator