| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6534 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6534 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ran crn 5655 Fn wfn 6525 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6534 |
| This theorem is referenced by: feq23 6688 feq3d 6692 fun2 6740 fconstg 6764 f1eq3 6770 mapvalg 8848 mapsnd 8898 cantnff 9686 axdc4uz 14000 supcvg 15870 lmff 23237 txcn 23562 lmmbr 25208 iscmet3 25243 dvcnvrelem2 25973 itgsubstlem 26005 umgrislfupgr 29048 uspgriedgedg 29101 usgrislfuspgr 29112 wlkv0 29577 isgrpo 30424 vciOLD 30488 isvclem 30504 nmop0h 31918 sitgaddlemb 34326 sitmcl 34329 cvmliftlem15 35266 mtyf 35520 matunitlindflem1 37586 sdclem1 37713 k0004lem1 44118 relpeq5 44921 stoweidlem57 46034 f1ocof1ob 47058 isuspgrim0lem 47854 gricushgr 47878 uspgrlimlem4 47951 mof02 48765 mofsn2 48771 mofeu 48774 fdomne0 48776 f002 48780 fullthinc 49284 functermc 49341 |
| Copyright terms: Public domain | W3C validator |