![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | df-f 6577 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
4 | df-f 6577 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 |
This theorem is referenced by: feq23 6731 feq3d 6734 fun2 6784 fconstg 6808 f1eq3 6814 mapvalg 8894 mapsnd 8944 cantnff 9743 axdc4uz 14035 supcvg 15904 lmff 23330 txcn 23655 lmmbr 25311 iscmet3 25346 dvcnvrelem2 26077 itgsubstlem 26109 umgrislfupgr 29158 uspgriedgedg 29211 usgrislfuspgr 29222 wlkv0 29687 isgrpo 30529 vciOLD 30593 isvclem 30609 nmop0h 32023 sitgaddlemb 34313 sitmcl 34316 cvmliftlem15 35266 mtyf 35520 matunitlindflem1 37576 sdclem1 37703 k0004lem1 44109 stoweidlem57 45978 f1ocof1ob 46996 isuspgrim0lem 47755 gricushgr 47770 uspgrlimlem4 47815 mof02 48552 mofsn2 48558 mofeu 48561 fdomne0 48563 f002 48567 fullthinc 48713 |
Copyright terms: Public domain | W3C validator |