![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4021 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | df-f 6566 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
4 | df-f 6566 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ⊆ wss 3962 ran crn 5689 Fn wfn 6557 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 df-f 6566 |
This theorem is referenced by: feq23 6719 feq3d 6723 fun2 6771 fconstg 6795 f1eq3 6801 mapvalg 8874 mapsnd 8924 cantnff 9711 axdc4uz 14021 supcvg 15888 lmff 23324 txcn 23649 lmmbr 25305 iscmet3 25340 dvcnvrelem2 26071 itgsubstlem 26103 umgrislfupgr 29154 uspgriedgedg 29207 usgrislfuspgr 29218 wlkv0 29683 isgrpo 30525 vciOLD 30589 isvclem 30605 nmop0h 32019 sitgaddlemb 34329 sitmcl 34332 cvmliftlem15 35282 mtyf 35536 matunitlindflem1 37602 sdclem1 37729 k0004lem1 44136 stoweidlem57 46012 f1ocof1ob 47030 isuspgrim0lem 47808 gricushgr 47823 uspgrlimlem4 47893 mof02 48668 mofsn2 48674 mofeu 48677 fdomne0 48679 f002 48683 fullthinc 48845 |
Copyright terms: Public domain | W3C validator |