| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3970 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6503 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6503 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 |
| This theorem is referenced by: feq23 6651 feq3d 6655 fun2 6705 fconstg 6729 f1eq3 6735 mapvalg 8786 mapsnd 8836 cantnff 9603 axdc4uz 13925 supcvg 15798 lmff 23164 txcn 23489 lmmbr 25134 iscmet3 25169 dvcnvrelem2 25899 itgsubstlem 25931 umgrislfupgr 29026 uspgriedgedg 29079 usgrislfuspgr 29090 wlkv0 29553 isgrpo 30399 vciOLD 30463 isvclem 30479 nmop0h 31893 sitgaddlemb 34312 sitmcl 34315 cvmliftlem15 35258 mtyf 35512 matunitlindflem1 37583 sdclem1 37710 k0004lem1 44109 relpeq5 44911 stoweidlem57 46028 f1ocof1ob 47055 isuspgrim0lem 47866 gricushgr 47890 uspgrlimlem4 47963 mof02 48800 mofsn2 48806 mofeu 48809 fdomne0 48811 f002 48815 fullthinc 49412 functermc 49470 |
| Copyright terms: Public domain | W3C validator |