Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3918 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | anbi2d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | df-f 6339 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
4 | df-f 6339 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ⊆ wss 3858 ran crn 5525 Fn wfn 6330 ⟶wf 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-f 6339 |
This theorem is referenced by: feq23 6482 feq3d 6485 fun2 6526 fconstg 6551 f1eq3 6557 mapvalg 8426 mapsnd 8468 cantnff 9170 axdc4uz 13401 supcvg 15259 lmff 22001 txcn 22326 lmmbr 23958 iscmet3 23993 dvcnvrelem2 24717 itgsubstlem 24747 umgrislfupgr 27015 usgrislfuspgr 27076 wlkv0 27539 isgrpo 28379 vciOLD 28443 isvclem 28459 nmop0h 29873 sitgaddlemb 31834 sitmcl 31837 cvmliftlem15 32776 mtyf 33030 matunitlindflem1 35333 sdclem1 35461 k0004lem1 41223 stoweidlem57 43065 isomushgr 44711 |
Copyright terms: Public domain | W3C validator |