| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3964 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6490 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6490 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3905 ran crn 5624 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 |
| This theorem is referenced by: feq23 6637 feq3d 6641 fun2 6691 fconstg 6715 f1eq3 6721 mapvalg 8770 mapsnd 8820 cantnff 9589 axdc4uz 13910 supcvg 15782 lmff 23205 txcn 23530 lmmbr 25175 iscmet3 25210 dvcnvrelem2 25940 itgsubstlem 25972 umgrislfupgr 29087 uspgriedgedg 29140 usgrislfuspgr 29151 wlkv0 29614 isgrpo 30460 vciOLD 30524 isvclem 30540 nmop0h 31954 sitgaddlemb 34335 sitmcl 34338 cvmliftlem15 35290 mtyf 35544 matunitlindflem1 37615 sdclem1 37742 k0004lem1 44140 relpeq5 44942 stoweidlem57 46058 f1ocof1ob 47085 isuspgrim0lem 47897 gricushgr 47921 uspgrlimlem4 47995 mof02 48843 mofsn2 48849 mofeu 48852 fdomne0 48854 f002 48858 fullthinc 49455 functermc 49513 |
| Copyright terms: Public domain | W3C validator |