| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3973 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6515 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6515 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ran crn 5639 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 |
| This theorem is referenced by: feq23 6669 feq3d 6673 fun2 6723 fconstg 6747 f1eq3 6753 mapvalg 8809 mapsnd 8859 cantnff 9627 axdc4uz 13949 supcvg 15822 lmff 23188 txcn 23513 lmmbr 25158 iscmet3 25193 dvcnvrelem2 25923 itgsubstlem 25955 umgrislfupgr 29050 uspgriedgedg 29103 usgrislfuspgr 29114 wlkv0 29579 isgrpo 30426 vciOLD 30490 isvclem 30506 nmop0h 31920 sitgaddlemb 34339 sitmcl 34342 cvmliftlem15 35285 mtyf 35539 matunitlindflem1 37610 sdclem1 37737 k0004lem1 44136 relpeq5 44938 stoweidlem57 46055 f1ocof1ob 47082 isuspgrim0lem 47893 gricushgr 47917 uspgrlimlem4 47990 mof02 48827 mofsn2 48833 mofeu 48836 fdomne0 48838 f002 48842 fullthinc 49439 functermc 49497 |
| Copyright terms: Public domain | W3C validator |