| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3957 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6493 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6493 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3898 ran crn 5622 Fn wfn 6484 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6493 |
| This theorem is referenced by: feq23 6640 feq3d 6644 fun2 6694 fconstg 6718 f1eq3 6724 mapvalg 8769 mapsnd 8820 cantnff 9575 axdc4uz 13898 supcvg 15770 lmff 23236 txcn 23561 lmmbr 25205 iscmet3 25240 dvcnvrelem2 25970 itgsubstlem 26002 umgrislfupgr 29122 uspgriedgedg 29175 usgrislfuspgr 29186 wlkv0 29649 isgrpo 30498 vciOLD 30562 isvclem 30578 nmop0h 31992 sitgaddlemb 34433 sitmcl 34436 cvmliftlem15 35414 mtyf 35668 matunitlindflem1 37729 sdclem1 37856 k0004lem1 44304 relpeq5 45105 stoweidlem57 46217 f1ocof1ob 47243 isuspgrim0lem 48055 gricushgr 48079 uspgrlimlem4 48153 mof02 49000 mofsn2 49006 mofeu 49009 fdomne0 49011 f002 49015 fullthinc 49611 functermc 49669 |
| Copyright terms: Public domain | W3C validator |