| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3956 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6480 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6480 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ran crn 5612 Fn wfn 6471 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-f 6480 |
| This theorem is referenced by: feq23 6627 feq3d 6631 fun2 6681 fconstg 6705 f1eq3 6711 mapvalg 8755 mapsnd 8805 cantnff 9559 axdc4uz 13886 supcvg 15758 lmff 23211 txcn 23536 lmmbr 25180 iscmet3 25215 dvcnvrelem2 25945 itgsubstlem 25977 umgrislfupgr 29096 uspgriedgedg 29149 usgrislfuspgr 29160 wlkv0 29623 isgrpo 30469 vciOLD 30533 isvclem 30549 nmop0h 31963 sitgaddlemb 34353 sitmcl 34356 cvmliftlem15 35334 mtyf 35588 matunitlindflem1 37656 sdclem1 37783 k0004lem1 44180 relpeq5 44981 stoweidlem57 46095 f1ocof1ob 47112 isuspgrim0lem 47924 gricushgr 47948 uspgrlimlem4 48022 mof02 48870 mofsn2 48876 mofeu 48879 fdomne0 48881 f002 48885 fullthinc 49482 functermc 49540 |
| Copyright terms: Public domain | W3C validator |