MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq3 Structured version   Visualization version   GIF version

Theorem feq3 6701
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))

Proof of Theorem feq3
StepHypRef Expression
1 sseq2 4009 . . 3 (𝐴 = 𝐵 → (ran 𝐹𝐴 ↔ ran 𝐹𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐵)))
3 df-f 6548 . 2 (𝐹:𝐶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐴))
4 df-f 6548 . 2 (𝐹:𝐶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wss 3949  ran crn 5678   Fn wfn 6539  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-f 6548
This theorem is referenced by:  feq23  6702  feq3d  6705  fun2  6755  fconstg  6779  f1eq3  6785  mapvalg  8830  mapsnd  8880  cantnff  9669  axdc4uz  13949  supcvg  15802  lmff  22805  txcn  23130  lmmbr  24775  iscmet3  24810  dvcnvrelem2  25535  itgsubstlem  25565  umgrislfupgr  28383  usgrislfuspgr  28444  wlkv0  28908  isgrpo  29750  vciOLD  29814  isvclem  29830  nmop0h  31244  sitgaddlemb  33347  sitmcl  33350  cvmliftlem15  34289  mtyf  34543  matunitlindflem1  36484  sdclem1  36611  k0004lem1  42898  stoweidlem57  44773  f1ocof1ob  45789  isomushgr  46494  mof02  47505  mofsn2  47511  mofeu  47514  fdomne0  47516  f002  47520  fullthinc  47666
  Copyright terms: Public domain W3C validator