![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3823 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | anbi2d 623 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | df-f 6105 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
4 | df-f 6105 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ⊆ wss 3769 ran crn 5313 Fn wfn 6096 ⟶wf 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-in 3776 df-ss 3783 df-f 6105 |
This theorem is referenced by: feq23 6240 feq3d 6243 fun2 6282 fconstg 6307 f1eq3 6313 mapvalg 8105 mapsnd 8137 cantnff 8821 axdc4uz 13038 supcvg 14926 lmff 21434 txcn 21758 lmmbr 23384 iscmet3 23419 dvcnvrelem2 24122 itgsubstlem 24152 umgrislfupgr 26358 usgrislfuspgr 26420 wlkv0 26900 isgrpo 27877 vciOLD 27941 isvclem 27957 nmop0h 29375 sitgaddlemb 30926 sitmcl 30929 cvmliftlem15 31797 mtyf 31966 matunitlindflem1 33894 sdclem1 34026 k0004lem1 39227 stoweidlem57 41017 isomushgr 42496 |
Copyright terms: Public domain | W3C validator |