| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3976 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6518 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6518 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 |
| This theorem is referenced by: feq23 6672 feq3d 6676 fun2 6726 fconstg 6750 f1eq3 6756 mapvalg 8812 mapsnd 8862 cantnff 9634 axdc4uz 13956 supcvg 15829 lmff 23195 txcn 23520 lmmbr 25165 iscmet3 25200 dvcnvrelem2 25930 itgsubstlem 25962 umgrislfupgr 29057 uspgriedgedg 29110 usgrislfuspgr 29121 wlkv0 29586 isgrpo 30433 vciOLD 30497 isvclem 30513 nmop0h 31927 sitgaddlemb 34346 sitmcl 34349 cvmliftlem15 35292 mtyf 35546 matunitlindflem1 37617 sdclem1 37744 k0004lem1 44143 relpeq5 44945 stoweidlem57 46062 f1ocof1ob 47086 isuspgrim0lem 47897 gricushgr 47921 uspgrlimlem4 47994 mof02 48831 mofsn2 48837 mofeu 48840 fdomne0 48842 f002 48846 fullthinc 49443 functermc 49501 |
| Copyright terms: Public domain | W3C validator |