| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 6535 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 6535 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ran crn 5655 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6535 |
| This theorem is referenced by: feq23 6689 feq3d 6693 fun2 6741 fconstg 6765 f1eq3 6771 mapvalg 8850 mapsnd 8900 cantnff 9688 axdc4uz 14002 supcvg 15872 lmff 23239 txcn 23564 lmmbr 25210 iscmet3 25245 dvcnvrelem2 25975 itgsubstlem 26007 umgrislfupgr 29102 uspgriedgedg 29155 usgrislfuspgr 29166 wlkv0 29631 isgrpo 30478 vciOLD 30542 isvclem 30558 nmop0h 31972 sitgaddlemb 34380 sitmcl 34383 cvmliftlem15 35320 mtyf 35574 matunitlindflem1 37640 sdclem1 37767 k0004lem1 44171 relpeq5 44973 stoweidlem57 46086 f1ocof1ob 47110 isuspgrim0lem 47906 gricushgr 47930 uspgrlimlem4 48003 mof02 48817 mofsn2 48823 mofeu 48826 fdomne0 48828 f002 48832 fullthinc 49336 functermc 49393 |
| Copyright terms: Public domain | W3C validator |