Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexabOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rexab 3625 as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexabOLD | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒)) | |
2 | vex 3427 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 3603 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
5 | 4 | anbi1i 627 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
6 | 5 | exbii 1855 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒) ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
7 | 1, 6 | bitri 278 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∃wex 1787 ∈ wcel 2112 {cab 2716 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rex 3070 df-v 3425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |