MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexabOLD Structured version   Visualization version   GIF version

Theorem rexabOLD 3717
Description: Obsolete version of rexab 3716 as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexabOLD (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem rexabOLD
StepHypRef Expression
1 df-rex 3077 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜒))
2 vex 3492 . . . . 5 𝑥 ∈ V
3 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
42, 3elab 3694 . . . 4 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
54anbi1i 623 . . 3 ((𝑥 ∈ {𝑦𝜑} ∧ 𝜒) ↔ (𝜓𝜒))
65exbii 1846 . 2 (∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜒) ↔ ∃𝑥(𝜓𝜒))
71, 6bitri 275 1 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wcel 2108  {cab 2717  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-v 3490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator