Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexrab | Structured version Visualization version GIF version |
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexrab | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3617 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒)) |
4 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) |
6 | 5 | rexbii2 3175 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-rab 3072 df-v 3424 |
This theorem is referenced by: wereu2 5577 frpomin 6228 wdom2d 9269 enfin2i 10008 infm3 11864 pmtrfrn 18981 pgpssslw 19134 ellspd 20919 1stcfb 22504 xkobval 22645 xkococn 22719 imasdsf1olem 23434 rusgrnumwwlks 28240 cvmliftlem15 33160 wsuclem 33746 eqscut2 33927 scutun12 33931 poimirlem4 35708 poimirlem26 35730 poimirlem27 35731 infdesc 40396 rexrabdioph 40532 hbtlem6 40870 |
Copyright terms: Public domain | W3C validator |