![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrab | Structured version Visualization version GIF version |
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexrab | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3679 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒)) |
4 | anass 469 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) |
6 | 5 | rexbii2 3089 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3069 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-rab 3432 df-v 3475 |
This theorem is referenced by: wereu2 5666 frpomin 6330 wdom2d 9557 enfin2i 10298 infm3 12155 pmtrfrn 19290 pgpssslw 19446 ellspd 21290 1stcfb 22878 xkobval 23019 xkococn 23093 imasdsf1olem 23808 eqscut2 27233 scutun12 27237 cuteq0 27259 rusgrnumwwlks 29093 cvmliftlem15 34118 wsuclem 34625 poimirlem4 36294 poimirlem26 36316 poimirlem27 36317 infdesc 41165 rexrabdioph 41301 hbtlem6 41640 |
Copyright terms: Public domain | W3C validator |