MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab Structured version   Visualization version   GIF version

Theorem rexrab 3705
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexrab (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3695 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32anbi1i 624 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ ((𝑥𝐴𝜓) ∧ 𝜒))
4 anass 468 . . 3 (((𝑥𝐴𝜓) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
53, 4bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
65rexbii2 3088 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wrex 3068  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-rab 3434  df-v 3480
This theorem is referenced by:  wereu2  5686  frpomin  6363  wdom2d  9618  enfin2i  10359  infm3  12225  pmtrfrn  19491  pgpssslw  19647  ellspd  21840  1stcfb  23469  xkobval  23610  xkococn  23684  imasdsf1olem  24399  eqscut2  27866  scutun12  27870  cuteq0  27892  rusgrnumwwlks  30004  cvmliftlem15  35283  wsuclem  35807  poimirlem4  37611  poimirlem26  37633  poimirlem27  37634  infdesc  42630  rexrabdioph  42782  hbtlem6  43118  uhgrimisgrgric  47837  uspgrlimlem1  47891
  Copyright terms: Public domain W3C validator