MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab Structured version   Visualization version   GIF version

Theorem rexrab 3718
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexrab (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3708 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32anbi1i 623 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ ((𝑥𝐴𝜓) ∧ 𝜒))
4 anass 468 . . 3 (((𝑥𝐴𝜓) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
53, 4bitri 275 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
65rexbii2 3096 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3076  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490
This theorem is referenced by:  wereu2  5697  frpomin  6372  wdom2d  9649  enfin2i  10390  infm3  12254  pmtrfrn  19500  pgpssslw  19656  ellspd  21845  1stcfb  23474  xkobval  23615  xkococn  23689  imasdsf1olem  24404  eqscut2  27869  scutun12  27873  cuteq0  27895  rusgrnumwwlks  30007  cvmliftlem15  35266  wsuclem  35789  poimirlem4  37584  poimirlem26  37606  poimirlem27  37607  infdesc  42598  rexrabdioph  42750  hbtlem6  43086  uhgrimisgrgric  47783  uspgrlimlem1  47812
  Copyright terms: Public domain W3C validator