| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrab | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexrab | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3647 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒)) |
| 4 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜒))) |
| 6 | 5 | rexbii2 3075 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 |
| This theorem is referenced by: wereu2 5613 frpomin 6287 wdom2d 9466 enfin2i 10209 infm3 12078 pmtrfrn 19368 pgpssslw 19524 ellspd 21737 1stcfb 23358 xkobval 23499 xkococn 23573 imasdsf1olem 24286 eqscut2 27745 scutun12 27749 cuteq0 27774 bdayon 28207 rusgrnumwwlks 29950 cvmliftlem15 35330 wsuclem 35858 poimirlem4 37663 poimirlem26 37685 poimirlem27 37686 infdesc 42675 rexrabdioph 42826 hbtlem6 43161 uhgrimisgrgric 47961 uspgrlimlem1 48018 |
| Copyright terms: Public domain | W3C validator |