MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab Structured version   Visualization version   GIF version

Theorem rexrab 3609
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexrab (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3602 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32anbi1i 627 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ ((𝑥𝐴𝜓) ∧ 𝜒))
4 anass 472 . . 3 (((𝑥𝐴𝜓) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
53, 4bitri 278 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
65rexbii2 3168 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wrex 3062  {crab 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3067  df-rab 3070  df-v 3410
This theorem is referenced by:  wereu2  5548  frpomin  6194  wdom2d  9196  enfin2i  9935  infm3  11791  pmtrfrn  18850  pgpssslw  19003  ellspd  20764  1stcfb  22342  xkobval  22483  xkococn  22557  imasdsf1olem  23271  rusgrnumwwlks  28058  cvmliftlem15  32973  wsuclem  33556  eqscut2  33737  scutun12  33741  poimirlem4  35518  poimirlem26  35540  poimirlem27  35541  infdesc  40183  rexrabdioph  40319  hbtlem6  40657
  Copyright terms: Public domain W3C validator