![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) |
Ref | Expression |
---|---|
raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3322 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rexbidv 3233 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | bitrd 271 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∃wrex 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 |
This theorem is referenced by: fri 5274 frsn 5394 isofrlem 6818 f1oweALT 7385 frxp 7524 1sdom 8405 oieq2 8660 zfregcl 8741 ishaus 21455 isreg 21465 isnrm 21468 lebnumlem3 23090 1vwmgr 27625 3vfriswmgr 27627 isgrpo 27877 pjhth 28777 bnj1154 31584 frmin 32255 isexid2 34141 ismndo2 34160 rngomndo 34221 stoweidlem28 40988 |
Copyright terms: Public domain | W3C validator |