Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidvv 3339 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rexeq 3343 friOLD 5550 frsn 5674 isofrlem 7211 f1oweALT 7815 frxp 7967 1sdom 9025 oieq2 9272 zfregcl 9353 frmin 9507 hashge2el2difr 14195 cat1 17812 ishaus 22473 isreg 22483 isnrm 22486 lebnumlem3 24126 1vwmgr 28640 3vfriswmgr 28642 isgrpo 28859 pjhth 29755 bnj1154 32979 satfvsuc 33323 satf0suc 33338 sat1el2xp 33341 fmlasuc0 33346 frxp2 33791 frxp3 33797 isexid2 36013 ismndo2 36032 rngomndo 36093 stoweidlem28 43569 prprval 44966 |
Copyright terms: Public domain | W3C validator |