![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidvv 3344 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-rex 3077 |
This theorem is referenced by: rexeqOLD 3349 friOLD 5658 frsn 5787 isofrlem 7376 f1oweALT 8013 frxp 8167 frxp2 8185 1sdomOLD 9312 oieq2 9582 zfregcl 9663 frmin 9818 hashge2el2difr 14530 cat1 18164 ishaus 23351 isreg 23361 isnrm 23364 lebnumlem3 25014 1vwmgr 30308 3vfriswmgr 30310 isgrpo 30529 pjhth 31425 bnj1154 34975 satfvsuc 35329 satf0suc 35344 sat1el2xp 35347 fmlasuc0 35352 isexid2 37815 ismndo2 37834 rngomndo 37895 stoweidlem28 45949 prprval 47388 |
Copyright terms: Public domain | W3C validator |