MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbi1dv Structured version   Visualization version   GIF version

Theorem rexeqbi1dv 3332
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.)
Hypothesis
Ref Expression
raleqbi1dv.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rexeqbi1dv (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqbi1dv
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 raleqbi1dv.1 . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2rexeqbidvv 3330 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-ral 3068  df-rex 3069
This theorem is referenced by:  rexeq  3334  friOLD  5541  frsn  5665  isofrlem  7191  f1oweALT  7788  frxp  7938  1sdom  8955  oieq2  9202  zfregcl  9283  frmin  9438  hashge2el2difr  14123  cat1  17728  ishaus  22381  isreg  22391  isnrm  22394  lebnumlem3  24032  1vwmgr  28541  3vfriswmgr  28543  isgrpo  28760  pjhth  29656  bnj1154  32879  satfvsuc  33223  satf0suc  33238  sat1el2xp  33241  fmlasuc0  33246  frxp2  33718  frxp3  33724  isexid2  35940  ismndo2  35959  rngomndo  36020  stoweidlem28  43459  prprval  44854
  Copyright terms: Public domain W3C validator