| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rexeqbidvv 3315 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-rex 3061 |
| This theorem is referenced by: rexeqOLD 3320 friOLD 5612 frsn 5742 isofrlem 7333 f1oweALT 7971 frxp 8125 frxp2 8143 1sdomOLD 9257 oieq2 9527 zfregcl 9608 frmin 9763 hashge2el2difr 14499 cat1 18110 ishaus 23260 isreg 23270 isnrm 23273 lebnumlem3 24913 1vwmgr 30257 3vfriswmgr 30259 isgrpo 30478 pjhth 31374 bnj1154 35030 satfvsuc 35383 satf0suc 35398 sat1el2xp 35401 fmlasuc0 35406 isexid2 37879 ismndo2 37898 rngomndo 37959 relpfrlem 44978 stoweidlem28 46057 prprval 47528 |
| Copyright terms: Public domain | W3C validator |