![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidvv 3329 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-rex 3069 |
This theorem is referenced by: rexeqOLD 3334 friOLD 5636 frsn 5762 isofrlem 7339 f1oweALT 7961 frxp 8114 frxp2 8132 1sdomOLD 9251 oieq2 9510 zfregcl 9591 frmin 9746 hashge2el2difr 14446 cat1 18051 ishaus 23046 isreg 23056 isnrm 23059 lebnumlem3 24709 1vwmgr 29796 3vfriswmgr 29798 isgrpo 30017 pjhth 30913 bnj1154 34308 satfvsuc 34650 satf0suc 34665 sat1el2xp 34668 fmlasuc0 34673 isexid2 37026 ismndo2 37045 rngomndo 37106 stoweidlem28 45042 prprval 46480 |
Copyright terms: Public domain | W3C validator |