MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbi1dv Structured version   Visualization version   GIF version

Theorem rexeqbi1dv 3306
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.)
Hypothesis
Ref Expression
raleqbi1dv.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rexeqbi1dv (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqbi1dv
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 raleqbi1dv.1 . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2rexeqbidvv 3303 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-rex 3058
This theorem is referenced by:  rexeqOLD  3308  frsn  5709  isofrlem  7283  f1oweALT  7913  frxp  8065  frxp2  8083  oieq2  9410  zfregcl  9491  zfregclOLD  9492  frmin  9653  hashge2el2difr  14395  cat1  18012  ishaus  23257  isreg  23267  isnrm  23270  lebnumlem3  24909  1vwmgr  30277  3vfriswmgr  30279  isgrpo  30498  pjhth  31394  bnj1154  35083  satfvsuc  35477  satf0suc  35492  sat1el2xp  35495  fmlasuc0  35500  isexid2  37968  ismndo2  37987  rngomndo  38048  relpfrlem  45110  stoweidlem28  46188  prprval  47676
  Copyright terms: Public domain W3C validator