| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rexeqbidvv 3303 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-rex 3058 |
| This theorem is referenced by: rexeqOLD 3308 frsn 5709 isofrlem 7283 f1oweALT 7913 frxp 8065 frxp2 8083 oieq2 9410 zfregcl 9491 zfregclOLD 9492 frmin 9653 hashge2el2difr 14395 cat1 18012 ishaus 23257 isreg 23267 isnrm 23270 lebnumlem3 24909 1vwmgr 30277 3vfriswmgr 30279 isgrpo 30498 pjhth 31394 bnj1154 35083 satfvsuc 35477 satf0suc 35492 sat1el2xp 35495 fmlasuc0 35500 isexid2 37968 ismndo2 37987 rngomndo 38048 relpfrlem 45110 stoweidlem28 46188 prprval 47676 |
| Copyright terms: Public domain | W3C validator |