Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidvv 3330 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexeq 3334 friOLD 5541 frsn 5665 isofrlem 7191 f1oweALT 7788 frxp 7938 1sdom 8955 oieq2 9202 zfregcl 9283 frmin 9438 hashge2el2difr 14123 cat1 17728 ishaus 22381 isreg 22391 isnrm 22394 lebnumlem3 24032 1vwmgr 28541 3vfriswmgr 28543 isgrpo 28760 pjhth 29656 bnj1154 32879 satfvsuc 33223 satf0suc 33238 sat1el2xp 33241 fmlasuc0 33246 frxp2 33718 frxp3 33724 isexid2 35940 ismndo2 35959 rngomndo 36020 stoweidlem28 43459 prprval 44854 |
Copyright terms: Public domain | W3C validator |