![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidvv 3332 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-rex 3072 |
This theorem is referenced by: rexeqOLD 3337 friOLD 5638 frsn 5764 isofrlem 7337 f1oweALT 7959 frxp 8112 frxp2 8130 1sdomOLD 9249 oieq2 9508 zfregcl 9589 frmin 9744 hashge2el2difr 14442 cat1 18047 ishaus 22826 isreg 22836 isnrm 22839 lebnumlem3 24479 1vwmgr 29529 3vfriswmgr 29531 isgrpo 29750 pjhth 30646 bnj1154 34010 satfvsuc 34352 satf0suc 34367 sat1el2xp 34370 fmlasuc0 34375 isexid2 36723 ismndo2 36742 rngomndo 36803 stoweidlem28 44744 prprval 46182 |
Copyright terms: Public domain | W3C validator |