MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbi1dv Structured version   Visualization version   GIF version

Theorem rexeqbi1dv 3312
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.)
Hypothesis
Ref Expression
raleqbi1dv.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rexeqbi1dv (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqbi1dv
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 raleqbi1dv.1 . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2rexeqbidvv 3309 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-rex 3054
This theorem is referenced by:  rexeqOLD  3314  frsn  5726  isofrlem  7315  f1oweALT  7951  frxp  8105  frxp2  8123  1sdomOLD  9196  oieq2  9466  zfregcl  9547  frmin  9702  hashge2el2difr  14446  cat1  18059  ishaus  23209  isreg  23219  isnrm  23222  lebnumlem3  24862  1vwmgr  30205  3vfriswmgr  30207  isgrpo  30426  pjhth  31322  bnj1154  34989  satfvsuc  35348  satf0suc  35363  sat1el2xp  35366  fmlasuc0  35371  isexid2  37849  ismndo2  37868  rngomndo  37929  relpfrlem  44943  stoweidlem28  46026  prprval  47515
  Copyright terms: Public domain W3C validator