| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rexeqbidvv 3311 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-rex 3055 |
| This theorem is referenced by: rexeqOLD 3316 frsn 5729 isofrlem 7318 f1oweALT 7954 frxp 8108 frxp2 8126 1sdomOLD 9203 oieq2 9473 zfregcl 9554 frmin 9709 hashge2el2difr 14453 cat1 18066 ishaus 23216 isreg 23226 isnrm 23229 lebnumlem3 24869 1vwmgr 30212 3vfriswmgr 30214 isgrpo 30433 pjhth 31329 bnj1154 34996 satfvsuc 35355 satf0suc 35370 sat1el2xp 35373 fmlasuc0 35378 isexid2 37856 ismndo2 37875 rngomndo 37936 relpfrlem 44950 stoweidlem28 46033 prprval 47519 |
| Copyright terms: Public domain | W3C validator |