| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rexeqbidvv 3309 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rex 3054 |
| This theorem is referenced by: rexeqOLD 3314 frsn 5726 isofrlem 7315 f1oweALT 7951 frxp 8105 frxp2 8123 1sdomOLD 9196 oieq2 9466 zfregcl 9547 frmin 9702 hashge2el2difr 14446 cat1 18059 ishaus 23209 isreg 23219 isnrm 23222 lebnumlem3 24862 1vwmgr 30205 3vfriswmgr 30207 isgrpo 30426 pjhth 31322 bnj1154 34989 satfvsuc 35348 satf0suc 35363 sat1el2xp 35366 fmlasuc0 35371 isexid2 37849 ismndo2 37868 rngomndo 37929 relpfrlem 44943 stoweidlem28 46026 prprval 47515 |
| Copyright terms: Public domain | W3C validator |