| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rexeqbidvv 3302 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-rex 3057 |
| This theorem is referenced by: rexeqOLD 3307 frsn 5699 isofrlem 7269 f1oweALT 7899 frxp 8051 frxp2 8069 oieq2 9394 zfregcl 9475 zfregclOLD 9476 frmin 9637 hashge2el2difr 14383 cat1 17999 ishaus 23232 isreg 23242 isnrm 23245 lebnumlem3 24884 1vwmgr 30248 3vfriswmgr 30250 isgrpo 30469 pjhth 31365 bnj1154 35003 satfvsuc 35397 satf0suc 35412 sat1el2xp 35415 fmlasuc0 35420 isexid2 37895 ismndo2 37914 rngomndo 37975 relpfrlem 44986 stoweidlem28 46066 prprval 47545 |
| Copyright terms: Public domain | W3C validator |