Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexeqbi1dv | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rexeqbidv 3321 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 df-clel 2831 df-rex 3077 |
This theorem is referenced by: rexeq 3325 fri 5484 frsn 5606 isofrlem 7085 f1oweALT 7675 frxp 7823 1sdom 8740 oieq2 9000 zfregcl 9081 hashge2el2difr 13881 ishaus 22012 isreg 22022 isnrm 22025 lebnumlem3 23654 1vwmgr 28150 3vfriswmgr 28152 isgrpo 28369 pjhth 29265 bnj1154 32489 satfvsuc 32829 satf0suc 32844 sat1el2xp 32847 fmlasuc0 32852 frmin 33324 frxp2 33336 frxp3 33342 isexid2 35563 ismndo2 35582 rngomndo 35643 stoweidlem28 43026 prprval 44389 |
Copyright terms: Public domain | W3C validator |