| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3288 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: raleqi 3290 raleqdv 3292 raleleq 3308 sbralieALT 3319 r19.2zb 4443 inteq 4898 iineq1 4957 frsn 5702 fncnv 6554 isoeq4 7254 onminex 7735 tfisg 7784 tfinds 7790 f1oweALT 7904 frxp 8056 frxp2 8074 poseq 8088 frrlem1 8216 frrlem13 8228 tfrlem1 8295 tfrlem12 8308 omeulem1 8497 ixpeq1 8832 undifixp 8858 ac6sfi 9168 frfi 9169 iunfi 9227 indexfi 9244 supeq1 9329 supeq2 9332 brttrcl2 9604 ssttrcl 9605 ttrcltr 9606 setinds 9639 bnd2 9786 acneq 9934 aceq3lem 10011 dfac5lem4 10017 dfac5lem4OLD 10019 dfac8 10027 dfac9 10028 kmlem1 10042 kmlem10 10051 kmlem13 10054 cfval 10138 axcc2lem 10327 axcc4dom 10332 axdc3lem3 10343 axdc3lem4 10344 ac4c 10367 ac5 10368 ac6sg 10379 zorn2lem7 10393 xrsupsslem 13206 xrinfmsslem 13207 xrsupss 13208 xrinfmss 13209 fsuppmapnn0fiubex 13899 rexanuz 15253 rexfiuz 15255 modfsummod 15701 gcdcllem3 16412 lcmfval 16532 lcmf0val 16533 lcmfunsnlem 16552 coprmprod 16572 coprmproddvds 16574 isprs 18202 drsdirfi 18211 isdrs2 18212 ispos 18220 pospropd 18231 lubeldm 18257 lubval 18260 glbeldm 18270 glbval 18273 istos 18322 isdlat 18428 mgmhmpropd 18606 mhmpropd 18700 isghm 19127 isghmOLD 19128 cntzval 19233 efgval 19629 iscmn 19701 isomnd 20035 rnghmval 20358 dfrhm2 20392 zrrnghm 20451 isorng 20776 lidldvgen 21271 ocvval 21604 isobs 21657 coe1fzgsumd 22219 evl1gsumd 22272 mat0dimcrng 22385 mdetunilem9 22535 ist0 23235 cmpcovf 23306 is1stc 23356 2ndc1stc 23366 isref 23424 txflf 23921 ustuqtop4 24159 iscfilu 24202 ispsmet 24219 ismet 24238 isxmet 24239 cncfval 24808 lebnumlem3 24889 fmcfil 25199 iscfil3 25200 caucfil 25210 iscmet3 25220 cfilres 25223 minveclem3 25356 ovolfiniun 25429 finiunmbl 25472 volfiniun 25475 dvcn 25850 ulmval 26316 sltval2 27595 sltres 27601 nolesgn2o 27610 nogesgn1o 27612 nodense 27631 nosupbnd2lem1 27654 noinfbnd2lem1 27669 brsslt 27725 madebday 27845 negsprop 27977 mulsprop 28069 onsfi 28283 axtgcont1 28446 nb3grpr 29360 dfconngr1 30168 isconngr 30169 1conngr 30174 frgr0v 30242 isplig 30456 isgrpo 30477 isablo 30526 ocval 31260 acunirnmpt 32641 prmidl 33405 ismbfm 34264 bnj865 34935 bnj1154 35011 bnj1296 35033 bnj1463 35067 r1filimi 35114 wevgblacfn 35153 derangval 35211 dfon2lem3 35827 dfon2lem7 35831 dfrecs2 35994 dfrdg4 35995 isfne 36383 finixpnum 37655 mblfinlem1 37707 mbfresfi 37716 indexdom 37784 heibor1lem 37859 isexid2 37905 ismndo2 37924 rngomndo 37985 pridl 38087 smprngopr 38102 ispridlc 38120 sn-isghm 42776 setindtrs 43128 dford3lem2 43130 dfac11 43165 rp-intrabeq 43324 rp-unirabeq 43325 rp-brsslt 43526 mnuop123d 44365 relpeq4 45050 trfr 45065 permac8prim 45117 fnchoice 45136 axccdom 45329 axccd 45336 stoweidlem31 46139 stoweidlem57 46165 fourierdlem80 46294 fourierdlem103 46317 fourierdlem104 46318 isvonmbl 46746 paireqne 47621 requad2 47733 nelsubc3lem 49181 isthinc 49530 0thincg 49569 cnelsubclem 49714 bnd2d 49792 |
| Copyright terms: Public domain | W3C validator |