![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3322 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
2 | rexnal 3101 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
3 | rexnal 3101 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ral 3063 df-rex 3072 |
This theorem is referenced by: raleqi 3324 raleqdv 3326 sbralieALT 3356 r19.2zb 4496 inteq 4954 iineq1 5015 friOLD 5638 frsn 5764 fncnv 6622 isoeq4 7317 onminex 7790 tfisg 7843 tfinds 7849 f1oweALT 7959 frxp 8112 frxp2 8130 poseq 8144 frrlem1 8271 frrlem13 8283 wfrlem1OLD 8308 wfrlem15OLD 8323 tfrlem1 8376 tfrlem12 8389 omeulem1 8582 ixpeq1 8902 undifixp 8928 ac6sfi 9287 frfi 9288 iunfi 9340 indexfi 9360 supeq1 9440 supeq2 9443 brttrcl2 9709 ssttrcl 9710 ttrcltr 9711 bnd2 9888 acneq 10038 aceq3lem 10115 dfac5lem4 10121 dfac8 10130 dfac9 10131 kmlem1 10145 kmlem10 10154 kmlem13 10157 cfval 10242 axcc2lem 10431 axcc4dom 10436 axdc3lem3 10447 axdc3lem4 10448 ac4c 10471 ac5 10472 ac6sg 10483 zorn2lem7 10497 xrsupsslem 13286 xrinfmsslem 13287 xrsupss 13288 xrinfmss 13289 fsuppmapnn0fiubex 13957 rexanuz 15292 rexfiuz 15294 modfsummod 15740 gcdcllem3 16442 lcmfval 16558 lcmf0val 16559 lcmfunsnlem 16578 coprmprod 16598 coprmproddvds 16600 isprs 18250 drsdirfi 18258 isdrs2 18259 ispos 18267 pospropd 18280 lubeldm 18306 lubval 18309 glbeldm 18319 glbval 18322 istos 18371 isdlat 18475 mhmpropd 18678 isghm 19092 cntzval 19185 efgval 19585 iscmn 19657 dfrhm2 20253 lidldvgen 20893 ocvval 21220 isobs 21275 coe1fzgsumd 21826 evl1gsumd 21876 mat0dimcrng 21972 mdetunilem9 22122 ist0 22824 cmpcovf 22895 is1stc 22945 2ndc1stc 22955 isref 23013 txflf 23510 ustuqtop4 23749 iscfilu 23793 ispsmet 23810 ismet 23829 isxmet 23830 cncfval 24404 lebnumlem3 24479 fmcfil 24789 iscfil3 24790 caucfil 24800 iscmet3 24810 cfilres 24813 minveclem3 24946 ovolfiniun 25018 finiunmbl 25061 volfiniun 25064 dvcn 25438 ulmval 25892 sltval2 27159 sltres 27165 nolesgn2o 27174 nogesgn1o 27176 nodense 27195 nosupbnd2lem1 27218 noinfbnd2lem1 27233 brsslt 27287 madebday 27394 negsprop 27509 mulsprop 27586 axtgcont1 27719 nb3grpr 28639 dfconngr1 29441 isconngr 29442 1conngr 29447 frgr0v 29515 isplig 29729 isgrpo 29750 isablo 29799 ocval 30533 acunirnmpt 31884 isomnd 32219 isorng 32417 prmidl 32558 ismbfm 33249 bnj865 33934 bnj1154 34010 bnj1296 34032 bnj1463 34066 derangval 34158 setinds 34750 dfon2lem3 34757 dfon2lem7 34761 dfrecs2 34922 dfrdg4 34923 isfne 35224 finixpnum 36473 mblfinlem1 36525 mbfresfi 36534 indexdom 36602 heibor1lem 36677 isexid2 36723 ismndo2 36742 rngomndo 36803 pridl 36905 smprngopr 36920 ispridlc 36938 setindtrs 41764 dford3lem2 41766 dfac11 41804 rp-intrabeq 41970 rp-unirabeq 41971 rp-brsslt 42174 mnuop123d 43021 fnchoice 43713 axccdom 43921 axccd 43928 stoweidlem31 44747 stoweidlem57 44773 fourierdlem80 44902 fourierdlem103 44925 fourierdlem104 44926 isvonmbl 45354 paireqne 46179 requad2 46291 mgmhmpropd 46555 rnghmval 46689 zrrnghm 46716 isthinc 47641 0thincg 47670 bnd2d 47726 |
Copyright terms: Public domain | W3C validator |