| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2141, ax-11 2157, and ax-12 2177. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3301 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3089 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3089 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: raleqi 3303 raleqdv 3305 raleleq 3321 sbralieALT 3338 r19.2zb 4471 inteq 4925 iineq1 4985 friOLD 5612 frsn 5742 fncnv 6608 isoeq4 7312 onminex 7794 tfisg 7847 tfinds 7853 f1oweALT 7969 frxp 8123 frxp2 8141 poseq 8155 frrlem1 8283 frrlem13 8295 wfrlem1OLD 8320 wfrlem15OLD 8335 tfrlem1 8388 tfrlem12 8401 omeulem1 8592 ixpeq1 8920 undifixp 8946 ac6sfi 9290 frfi 9291 iunfi 9353 indexfi 9370 supeq1 9455 supeq2 9458 brttrcl2 9726 ssttrcl 9727 ttrcltr 9728 bnd2 9905 acneq 10055 aceq3lem 10132 dfac5lem4 10138 dfac5lem4OLD 10140 dfac8 10148 dfac9 10149 kmlem1 10163 kmlem10 10172 kmlem13 10175 cfval 10259 axcc2lem 10448 axcc4dom 10453 axdc3lem3 10464 axdc3lem4 10465 ac4c 10488 ac5 10489 ac6sg 10500 zorn2lem7 10514 xrsupsslem 13321 xrinfmsslem 13322 xrsupss 13323 xrinfmss 13324 fsuppmapnn0fiubex 14008 rexanuz 15362 rexfiuz 15364 modfsummod 15808 gcdcllem3 16518 lcmfval 16638 lcmf0val 16639 lcmfunsnlem 16658 coprmprod 16678 coprmproddvds 16680 isprs 18306 drsdirfi 18315 isdrs2 18316 ispos 18324 pospropd 18335 lubeldm 18361 lubval 18364 glbeldm 18374 glbval 18377 istos 18426 isdlat 18530 mgmhmpropd 18674 mhmpropd 18768 isghm 19196 isghmOLD 19197 cntzval 19302 efgval 19696 iscmn 19768 rnghmval 20398 dfrhm2 20432 zrrnghm 20494 lidldvgen 21293 ocvval 21625 isobs 21678 coe1fzgsumd 22240 evl1gsumd 22293 mat0dimcrng 22406 mdetunilem9 22556 ist0 23256 cmpcovf 23327 is1stc 23377 2ndc1stc 23387 isref 23445 txflf 23942 ustuqtop4 24181 iscfilu 24224 ispsmet 24241 ismet 24260 isxmet 24261 cncfval 24830 lebnumlem3 24911 fmcfil 25222 iscfil3 25223 caucfil 25233 iscmet3 25243 cfilres 25246 minveclem3 25379 ovolfiniun 25452 finiunmbl 25495 volfiniun 25498 dvcn 25873 ulmval 26339 sltval2 27618 sltres 27624 nolesgn2o 27633 nogesgn1o 27635 nodense 27654 nosupbnd2lem1 27677 noinfbnd2lem1 27692 brsslt 27747 madebday 27855 negsprop 27984 mulsprop 28073 axtgcont1 28393 nb3grpr 29307 dfconngr1 30115 isconngr 30116 1conngr 30121 frgr0v 30189 isplig 30403 isgrpo 30424 isablo 30473 ocval 31207 acunirnmpt 32583 isomnd 33015 isorng 33267 prmidl 33401 ismbfm 34228 bnj865 34900 bnj1154 34976 bnj1296 34998 bnj1463 35032 wevgblacfn 35077 derangval 35135 setinds 35742 dfon2lem3 35749 dfon2lem7 35753 dfrecs2 35914 dfrdg4 35915 isfne 36303 finixpnum 37575 mblfinlem1 37627 mbfresfi 37636 indexdom 37704 heibor1lem 37779 isexid2 37825 ismndo2 37844 rngomndo 37905 pridl 38007 smprngopr 38022 ispridlc 38040 sn-isghm 42643 setindtrs 42996 dford3lem2 42998 dfac11 43033 rp-intrabeq 43192 rp-unirabeq 43193 rp-brsslt 43394 mnuop123d 44234 relpeq4 44920 trfr 44935 fnchoice 45001 axccdom 45194 axccd 45201 stoweidlem31 46008 stoweidlem57 46034 fourierdlem80 46163 fourierdlem103 46186 fourierdlem104 46187 isvonmbl 46615 paireqne 47473 requad2 47585 nelsubc3lem 48985 isthinc 49253 0thincg 49292 cnelsubclem 49428 bnd2d 49493 |
| Copyright terms: Public domain | W3C validator |