![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3330 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
2 | rexnal 3106 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
3 | rexnal 3106 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: raleqi 3332 raleqdv 3334 raleleq 3350 sbralieALT 3367 r19.2zb 4519 inteq 4973 iineq1 5032 friOLD 5658 frsn 5787 fncnv 6651 isoeq4 7356 onminex 7838 tfisg 7891 tfinds 7897 f1oweALT 8013 frxp 8167 frxp2 8185 poseq 8199 frrlem1 8327 frrlem13 8339 wfrlem1OLD 8364 wfrlem15OLD 8379 tfrlem1 8432 tfrlem12 8445 omeulem1 8638 ixpeq1 8966 undifixp 8992 ac6sfi 9348 frfi 9349 iunfi 9411 indexfi 9430 supeq1 9514 supeq2 9517 brttrcl2 9783 ssttrcl 9784 ttrcltr 9785 bnd2 9962 acneq 10112 aceq3lem 10189 dfac5lem4 10195 dfac5lem4OLD 10197 dfac8 10205 dfac9 10206 kmlem1 10220 kmlem10 10229 kmlem13 10232 cfval 10316 axcc2lem 10505 axcc4dom 10510 axdc3lem3 10521 axdc3lem4 10522 ac4c 10545 ac5 10546 ac6sg 10557 zorn2lem7 10571 xrsupsslem 13369 xrinfmsslem 13370 xrsupss 13371 xrinfmss 13372 fsuppmapnn0fiubex 14043 rexanuz 15394 rexfiuz 15396 modfsummod 15842 gcdcllem3 16547 lcmfval 16668 lcmf0val 16669 lcmfunsnlem 16688 coprmprod 16708 coprmproddvds 16710 isprs 18367 drsdirfi 18375 isdrs2 18376 ispos 18384 pospropd 18397 lubeldm 18423 lubval 18426 glbeldm 18436 glbval 18439 istos 18488 isdlat 18592 mgmhmpropd 18736 mhmpropd 18827 isghm 19255 isghmOLD 19256 cntzval 19361 efgval 19759 iscmn 19831 rnghmval 20466 dfrhm2 20500 zrrnghm 20562 lidldvgen 21367 ocvval 21708 isobs 21763 coe1fzgsumd 22329 evl1gsumd 22382 mat0dimcrng 22497 mdetunilem9 22647 ist0 23349 cmpcovf 23420 is1stc 23470 2ndc1stc 23480 isref 23538 txflf 24035 ustuqtop4 24274 iscfilu 24318 ispsmet 24335 ismet 24354 isxmet 24355 cncfval 24933 lebnumlem3 25014 fmcfil 25325 iscfil3 25326 caucfil 25336 iscmet3 25346 cfilres 25349 minveclem3 25482 ovolfiniun 25555 finiunmbl 25598 volfiniun 25601 dvcn 25977 ulmval 26441 sltval2 27719 sltres 27725 nolesgn2o 27734 nogesgn1o 27736 nodense 27755 nosupbnd2lem1 27778 noinfbnd2lem1 27793 brsslt 27848 madebday 27956 negsprop 28085 mulsprop 28174 axtgcont1 28494 nb3grpr 29417 dfconngr1 30220 isconngr 30221 1conngr 30226 frgr0v 30294 isplig 30508 isgrpo 30529 isablo 30578 ocval 31312 acunirnmpt 32677 isomnd 33051 isorng 33294 prmidl 33433 ismbfm 34215 bnj865 34899 bnj1154 34975 bnj1296 34997 bnj1463 35031 wevgblacfn 35076 derangval 35135 setinds 35742 dfon2lem3 35749 dfon2lem7 35753 dfrecs2 35914 dfrdg4 35915 isfne 36305 finixpnum 37565 mblfinlem1 37617 mbfresfi 37626 indexdom 37694 heibor1lem 37769 isexid2 37815 ismndo2 37834 rngomndo 37895 pridl 37997 smprngopr 38012 ispridlc 38030 sn-isghm 42628 setindtrs 42982 dford3lem2 42984 dfac11 43019 rp-intrabeq 43182 rp-unirabeq 43183 rp-brsslt 43385 mnuop123d 44231 fnchoice 44929 axccdom 45129 axccd 45136 stoweidlem31 45952 stoweidlem57 45978 fourierdlem80 46107 fourierdlem103 46130 fourierdlem104 46131 isvonmbl 46559 paireqne 47385 requad2 47497 isthinc 48688 0thincg 48717 bnd2d 48773 |
Copyright terms: Public domain | W3C validator |