![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2138, ax-11 2154, and ax-12 2174. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3319 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
2 | rexnal 3097 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
3 | rexnal 3097 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1536 ∀wral 3058 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ral 3059 df-rex 3068 |
This theorem is referenced by: raleqi 3321 raleqdv 3323 raleleq 3339 sbralieALT 3356 r19.2zb 4501 inteq 4953 iineq1 5013 friOLD 5646 frsn 5775 fncnv 6640 isoeq4 7339 onminex 7821 tfisg 7874 tfinds 7880 f1oweALT 7995 frxp 8149 frxp2 8167 poseq 8181 frrlem1 8309 frrlem13 8321 wfrlem1OLD 8346 wfrlem15OLD 8361 tfrlem1 8414 tfrlem12 8427 omeulem1 8618 ixpeq1 8946 undifixp 8972 ac6sfi 9317 frfi 9318 iunfi 9380 indexfi 9397 supeq1 9482 supeq2 9485 brttrcl2 9751 ssttrcl 9752 ttrcltr 9753 bnd2 9930 acneq 10080 aceq3lem 10157 dfac5lem4 10163 dfac5lem4OLD 10165 dfac8 10173 dfac9 10174 kmlem1 10188 kmlem10 10197 kmlem13 10200 cfval 10284 axcc2lem 10473 axcc4dom 10478 axdc3lem3 10489 axdc3lem4 10490 ac4c 10513 ac5 10514 ac6sg 10525 zorn2lem7 10539 xrsupsslem 13345 xrinfmsslem 13346 xrsupss 13347 xrinfmss 13348 fsuppmapnn0fiubex 14029 rexanuz 15380 rexfiuz 15382 modfsummod 15826 gcdcllem3 16534 lcmfval 16654 lcmf0val 16655 lcmfunsnlem 16674 coprmprod 16694 coprmproddvds 16696 isprs 18353 drsdirfi 18362 isdrs2 18363 ispos 18371 pospropd 18384 lubeldm 18410 lubval 18413 glbeldm 18423 glbval 18426 istos 18475 isdlat 18579 mgmhmpropd 18723 mhmpropd 18817 isghm 19245 isghmOLD 19246 cntzval 19351 efgval 19749 iscmn 19821 rnghmval 20456 dfrhm2 20490 zrrnghm 20552 lidldvgen 21361 ocvval 21702 isobs 21757 coe1fzgsumd 22323 evl1gsumd 22376 mat0dimcrng 22491 mdetunilem9 22641 ist0 23343 cmpcovf 23414 is1stc 23464 2ndc1stc 23474 isref 23532 txflf 24029 ustuqtop4 24268 iscfilu 24312 ispsmet 24329 ismet 24348 isxmet 24349 cncfval 24927 lebnumlem3 25008 fmcfil 25319 iscfil3 25320 caucfil 25330 iscmet3 25340 cfilres 25343 minveclem3 25476 ovolfiniun 25549 finiunmbl 25592 volfiniun 25595 dvcn 25971 ulmval 26437 sltval2 27715 sltres 27721 nolesgn2o 27730 nogesgn1o 27732 nodense 27751 nosupbnd2lem1 27774 noinfbnd2lem1 27789 brsslt 27844 madebday 27952 negsprop 28081 mulsprop 28170 axtgcont1 28490 nb3grpr 29413 dfconngr1 30216 isconngr 30217 1conngr 30222 frgr0v 30290 isplig 30504 isgrpo 30525 isablo 30574 ocval 31308 acunirnmpt 32675 isomnd 33060 isorng 33308 prmidl 33447 ismbfm 34231 bnj865 34915 bnj1154 34991 bnj1296 35013 bnj1463 35047 wevgblacfn 35092 derangval 35151 setinds 35759 dfon2lem3 35766 dfon2lem7 35770 dfrecs2 35931 dfrdg4 35932 isfne 36321 finixpnum 37591 mblfinlem1 37643 mbfresfi 37652 indexdom 37720 heibor1lem 37795 isexid2 37841 ismndo2 37860 rngomndo 37921 pridl 38023 smprngopr 38038 ispridlc 38056 sn-isghm 42659 setindtrs 43013 dford3lem2 43015 dfac11 43050 rp-intrabeq 43209 rp-unirabeq 43210 rp-brsslt 43412 mnuop123d 44257 fnchoice 44966 axccdom 45164 axccd 45171 stoweidlem31 45986 stoweidlem57 46012 fourierdlem80 46141 fourierdlem103 46164 fourierdlem104 46165 isvonmbl 46593 paireqne 47435 requad2 47547 isthinc 48820 0thincg 48850 bnd2d 48911 |
Copyright terms: Public domain | W3C validator |