Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜑)) | |
2 | 1 | raleqbi1dv 3331 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ral 3068 |
This theorem is referenced by: raleqi 3337 raleqdv 3339 sbralie 3395 r19.2zb 4423 inteq 4879 iineq1 4938 friOLD 5541 frsn 5665 fncnv 6491 isoeq4 7171 onminex 7629 tfinds 7681 f1oweALT 7788 frxp 7938 frrlem1 8073 frrlem13 8085 wfrlem1OLD 8110 wfrlem15OLD 8125 tfrlem1 8178 tfrlem12 8191 omeulem1 8375 ixpeq1 8654 undifixp 8680 ac6sfi 8988 frfi 8989 iunfi 9037 indexfi 9057 supeq1 9134 supeq2 9137 bnd2 9582 acneq 9730 aceq3lem 9807 dfac5lem4 9813 dfac8 9822 dfac9 9823 kmlem1 9837 kmlem10 9846 kmlem13 9849 cfval 9934 axcc2lem 10123 axcc4dom 10128 axdc3lem3 10139 axdc3lem4 10140 ac4c 10163 ac5 10164 ac6sg 10175 zorn2lem7 10189 xrsupsslem 12970 xrinfmsslem 12971 xrsupss 12972 xrinfmss 12973 fsuppmapnn0fiubex 13640 rexanuz 14985 rexfiuz 14987 modfsummod 15434 gcdcllem3 16136 lcmfval 16254 lcmf0val 16255 lcmfunsnlem 16274 coprmprod 16294 coprmproddvds 16296 isprs 17930 drsdirfi 17938 isdrs2 17939 ispos 17947 pospropd 17960 lubeldm 17986 lubval 17989 glbeldm 17999 glbval 18002 istos 18051 isdlat 18155 mhmpropd 18351 isghm 18749 cntzval 18842 efgval 19238 iscmn 19309 dfrhm2 19876 lidldvgen 20439 ocvval 20784 isobs 20837 coe1fzgsumd 21383 evl1gsumd 21433 mat0dimcrng 21527 mdetunilem9 21677 ist0 22379 cmpcovf 22450 is1stc 22500 2ndc1stc 22510 isref 22568 txflf 23065 ustuqtop4 23304 iscfilu 23348 ispsmet 23365 ismet 23384 isxmet 23385 cncfval 23957 lebnumlem3 24032 fmcfil 24341 iscfil3 24342 caucfil 24352 iscmet3 24362 cfilres 24365 minveclem3 24498 ovolfiniun 24570 finiunmbl 24613 volfiniun 24616 dvcn 24990 ulmval 25444 axtgcont1 26733 nb3grpr 27652 dfconngr1 28453 isconngr 28454 1conngr 28459 frgr0v 28527 isplig 28739 isgrpo 28760 isablo 28809 ocval 29543 acunirnmpt 30898 isomnd 31229 isorng 31400 prmidl 31517 ismbfm 32119 isanmbfm 32123 bnj865 32803 bnj1154 32879 bnj1296 32901 bnj1463 32935 derangval 33029 setinds 33660 dfon2lem3 33667 dfon2lem7 33671 tfisg 33692 brttrcl2 33700 ssttrcl 33701 ttrcltr 33702 frxp2 33718 frxp3 33724 poseq 33729 sltval2 33786 sltres 33792 nolesgn2o 33801 nogesgn1o 33803 nodense 33822 nosupbnd2lem1 33845 noinfbnd2lem1 33860 brsslt 33907 madebday 34007 dfrecs2 34179 dfrdg4 34180 isfne 34455 finixpnum 35689 mblfinlem1 35741 mbfresfi 35750 indexdom 35819 heibor1lem 35894 isexid2 35940 ismndo2 35959 rngomndo 36020 pridl 36122 smprngopr 36137 ispridlc 36155 setindtrs 40763 dford3lem2 40765 dfac11 40803 mnuop123d 41769 fnchoice 42461 axccdom 42651 axccd 42657 stoweidlem31 43462 stoweidlem57 43488 fourierdlem80 43617 fourierdlem103 43640 fourierdlem104 43641 isvonmbl 44066 paireqne 44851 requad2 44963 mgmhmpropd 45227 rnghmval 45337 zrrnghm 45363 isthinc 46190 0thincg 46219 bnd2d 46273 |
Copyright terms: Public domain | W3C validator |