| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3285 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3081 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3081 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqi 3287 raleqdv 3289 raleleq 3305 sbralieALT 3316 r19.2zb 4447 inteq 4899 iineq1 4959 frsn 5707 fncnv 6555 isoeq4 7257 onminex 7738 tfisg 7787 tfinds 7793 f1oweALT 7907 frxp 8059 frxp2 8077 poseq 8091 frrlem1 8219 frrlem13 8231 tfrlem1 8298 tfrlem12 8311 omeulem1 8500 ixpeq1 8835 undifixp 8861 ac6sfi 9173 frfi 9174 iunfi 9233 indexfi 9250 supeq1 9335 supeq2 9338 brttrcl2 9610 ssttrcl 9611 ttrcltr 9612 bnd2 9789 acneq 9937 aceq3lem 10014 dfac5lem4 10020 dfac5lem4OLD 10022 dfac8 10030 dfac9 10031 kmlem1 10045 kmlem10 10054 kmlem13 10057 cfval 10141 axcc2lem 10330 axcc4dom 10335 axdc3lem3 10346 axdc3lem4 10347 ac4c 10370 ac5 10371 ac6sg 10382 zorn2lem7 10396 xrsupsslem 13209 xrinfmsslem 13210 xrsupss 13211 xrinfmss 13212 fsuppmapnn0fiubex 13899 rexanuz 15253 rexfiuz 15255 modfsummod 15701 gcdcllem3 16412 lcmfval 16532 lcmf0val 16533 lcmfunsnlem 16552 coprmprod 16572 coprmproddvds 16574 isprs 18202 drsdirfi 18211 isdrs2 18212 ispos 18220 pospropd 18231 lubeldm 18257 lubval 18260 glbeldm 18270 glbval 18273 istos 18322 isdlat 18428 mgmhmpropd 18572 mhmpropd 18666 isghm 19094 isghmOLD 19095 cntzval 19200 efgval 19596 iscmn 19668 isomnd 20002 rnghmval 20325 dfrhm2 20359 zrrnghm 20421 isorng 20746 lidldvgen 21241 ocvval 21574 isobs 21627 coe1fzgsumd 22189 evl1gsumd 22242 mat0dimcrng 22355 mdetunilem9 22505 ist0 23205 cmpcovf 23276 is1stc 23326 2ndc1stc 23336 isref 23394 txflf 23891 ustuqtop4 24130 iscfilu 24173 ispsmet 24190 ismet 24209 isxmet 24210 cncfval 24779 lebnumlem3 24860 fmcfil 25170 iscfil3 25171 caucfil 25181 iscmet3 25191 cfilres 25194 minveclem3 25327 ovolfiniun 25400 finiunmbl 25443 volfiniun 25446 dvcn 25821 ulmval 26287 sltval2 27566 sltres 27572 nolesgn2o 27581 nogesgn1o 27583 nodense 27602 nosupbnd2lem1 27625 noinfbnd2lem1 27640 brsslt 27696 madebday 27814 negsprop 27946 mulsprop 28038 onsfi 28252 axtgcont1 28413 nb3grpr 29327 dfconngr1 30132 isconngr 30133 1conngr 30138 frgr0v 30206 isplig 30420 isgrpo 30441 isablo 30490 ocval 31224 acunirnmpt 32602 prmidl 33377 ismbfm 34218 bnj865 34890 bnj1154 34966 bnj1296 34988 bnj1463 35022 wevgblacfn 35086 derangval 35144 setinds 35756 dfon2lem3 35763 dfon2lem7 35767 dfrecs2 35928 dfrdg4 35929 isfne 36317 finixpnum 37589 mblfinlem1 37641 mbfresfi 37650 indexdom 37718 heibor1lem 37793 isexid2 37839 ismndo2 37858 rngomndo 37919 pridl 38021 smprngopr 38036 ispridlc 38054 sn-isghm 42650 setindtrs 43002 dford3lem2 43004 dfac11 43039 rp-intrabeq 43198 rp-unirabeq 43199 rp-brsslt 43400 mnuop123d 44239 relpeq4 44925 trfr 44940 permac8prim 44992 fnchoice 45011 axccdom 45204 axccd 45211 stoweidlem31 46016 stoweidlem57 46042 fourierdlem80 46171 fourierdlem103 46194 fourierdlem104 46195 isvonmbl 46623 paireqne 47499 requad2 47611 nelsubc3lem 49059 isthinc 49408 0thincg 49447 cnelsubclem 49592 bnd2d 49670 |
| Copyright terms: Public domain | W3C validator |