Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜑)) | |
2 | 1 | raleqbi1dv 3341 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-ral 3070 |
This theorem is referenced by: raleqi 3347 raleqdv 3349 sbralie 3407 r19.2zb 4427 inteq 4883 iineq1 4942 friOLD 5551 frsn 5675 fncnv 6514 isoeq4 7200 onminex 7661 tfinds 7715 f1oweALT 7824 frxp 7976 frrlem1 8111 frrlem13 8123 wfrlem1OLD 8148 wfrlem15OLD 8163 tfrlem1 8216 tfrlem12 8229 omeulem1 8422 ixpeq1 8705 undifixp 8731 ac6sfi 9067 frfi 9068 iunfi 9116 indexfi 9136 supeq1 9213 supeq2 9216 brttrcl2 9481 ssttrcl 9482 ttrcltr 9483 bnd2 9660 acneq 9808 aceq3lem 9885 dfac5lem4 9891 dfac8 9900 dfac9 9901 kmlem1 9915 kmlem10 9924 kmlem13 9927 cfval 10012 axcc2lem 10201 axcc4dom 10206 axdc3lem3 10217 axdc3lem4 10218 ac4c 10241 ac5 10242 ac6sg 10253 zorn2lem7 10267 xrsupsslem 13050 xrinfmsslem 13051 xrsupss 13052 xrinfmss 13053 fsuppmapnn0fiubex 13721 rexanuz 15066 rexfiuz 15068 modfsummod 15515 gcdcllem3 16217 lcmfval 16335 lcmf0val 16336 lcmfunsnlem 16355 coprmprod 16375 coprmproddvds 16377 isprs 18024 drsdirfi 18032 isdrs2 18033 ispos 18041 pospropd 18054 lubeldm 18080 lubval 18083 glbeldm 18093 glbval 18096 istos 18145 isdlat 18249 mhmpropd 18445 isghm 18843 cntzval 18936 efgval 19332 iscmn 19403 dfrhm2 19970 lidldvgen 20535 ocvval 20881 isobs 20936 coe1fzgsumd 21482 evl1gsumd 21532 mat0dimcrng 21628 mdetunilem9 21778 ist0 22480 cmpcovf 22551 is1stc 22601 2ndc1stc 22611 isref 22669 txflf 23166 ustuqtop4 23405 iscfilu 23449 ispsmet 23466 ismet 23485 isxmet 23486 cncfval 24060 lebnumlem3 24135 fmcfil 24445 iscfil3 24446 caucfil 24456 iscmet3 24466 cfilres 24469 minveclem3 24602 ovolfiniun 24674 finiunmbl 24717 volfiniun 24720 dvcn 25094 ulmval 25548 axtgcont1 26838 nb3grpr 27758 dfconngr1 28561 isconngr 28562 1conngr 28567 frgr0v 28635 isplig 28847 isgrpo 28868 isablo 28917 ocval 29651 acunirnmpt 31005 isomnd 31336 isorng 31507 prmidl 31624 ismbfm 32228 isanmbfm 32232 bnj865 32912 bnj1154 32988 bnj1296 33010 bnj1463 33044 derangval 33138 setinds 33763 dfon2lem3 33770 dfon2lem7 33774 tfisg 33795 frxp2 33800 frxp3 33806 poseq 33811 sltval2 33868 sltres 33874 nolesgn2o 33883 nogesgn1o 33885 nodense 33904 nosupbnd2lem1 33927 noinfbnd2lem1 33942 brsslt 33989 madebday 34089 dfrecs2 34261 dfrdg4 34262 isfne 34537 finixpnum 35771 mblfinlem1 35823 mbfresfi 35832 indexdom 35901 heibor1lem 35976 isexid2 36022 ismndo2 36041 rngomndo 36102 pridl 36204 smprngopr 36219 ispridlc 36237 setindtrs 40854 dford3lem2 40856 dfac11 40894 mnuop123d 41887 fnchoice 42579 axccdom 42769 axccd 42775 stoweidlem31 43579 stoweidlem57 43605 fourierdlem80 43734 fourierdlem103 43757 fourierdlem104 43758 isvonmbl 44183 paireqne 44974 requad2 45086 mgmhmpropd 45350 rnghmval 45460 zrrnghm 45486 isthinc 46313 0thincg 46342 bnd2d 46398 |
Copyright terms: Public domain | W3C validator |