| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3292 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqi 3294 raleqdv 3296 raleleq 3312 sbralieALT 3324 r19.2zb 4455 inteq 4909 iineq1 4969 frsn 5719 fncnv 6573 isoeq4 7277 onminex 7758 tfisg 7810 tfinds 7816 f1oweALT 7930 frxp 8082 frxp2 8100 poseq 8114 frrlem1 8242 frrlem13 8254 tfrlem1 8321 tfrlem12 8334 omeulem1 8523 ixpeq1 8858 undifixp 8884 ac6sfi 9207 frfi 9208 iunfi 9270 indexfi 9287 supeq1 9372 supeq2 9375 brttrcl2 9643 ssttrcl 9644 ttrcltr 9645 bnd2 9822 acneq 9972 aceq3lem 10049 dfac5lem4 10055 dfac5lem4OLD 10057 dfac8 10065 dfac9 10066 kmlem1 10080 kmlem10 10089 kmlem13 10092 cfval 10176 axcc2lem 10365 axcc4dom 10370 axdc3lem3 10381 axdc3lem4 10382 ac4c 10405 ac5 10406 ac6sg 10417 zorn2lem7 10431 xrsupsslem 13243 xrinfmsslem 13244 xrsupss 13245 xrinfmss 13246 fsuppmapnn0fiubex 13933 rexanuz 15288 rexfiuz 15290 modfsummod 15736 gcdcllem3 16447 lcmfval 16567 lcmf0val 16568 lcmfunsnlem 16587 coprmprod 16607 coprmproddvds 16609 isprs 18237 drsdirfi 18246 isdrs2 18247 ispos 18255 pospropd 18266 lubeldm 18292 lubval 18295 glbeldm 18305 glbval 18308 istos 18357 isdlat 18463 mgmhmpropd 18607 mhmpropd 18701 isghm 19129 isghmOLD 19130 cntzval 19235 efgval 19631 iscmn 19703 isomnd 20037 rnghmval 20360 dfrhm2 20394 zrrnghm 20456 isorng 20781 lidldvgen 21276 ocvval 21609 isobs 21662 coe1fzgsumd 22224 evl1gsumd 22277 mat0dimcrng 22390 mdetunilem9 22540 ist0 23240 cmpcovf 23311 is1stc 23361 2ndc1stc 23371 isref 23429 txflf 23926 ustuqtop4 24165 iscfilu 24208 ispsmet 24225 ismet 24244 isxmet 24245 cncfval 24814 lebnumlem3 24895 fmcfil 25205 iscfil3 25206 caucfil 25216 iscmet3 25226 cfilres 25229 minveclem3 25362 ovolfiniun 25435 finiunmbl 25478 volfiniun 25481 dvcn 25856 ulmval 26322 sltval2 27601 sltres 27607 nolesgn2o 27616 nogesgn1o 27618 nodense 27637 nosupbnd2lem1 27660 noinfbnd2lem1 27675 brsslt 27731 madebday 27849 negsprop 27981 mulsprop 28073 onsfi 28287 axtgcont1 28448 nb3grpr 29362 dfconngr1 30167 isconngr 30168 1conngr 30173 frgr0v 30241 isplig 30455 isgrpo 30476 isablo 30525 ocval 31259 acunirnmpt 32633 prmidl 33404 ismbfm 34234 bnj865 34906 bnj1154 34982 bnj1296 35004 bnj1463 35038 wevgblacfn 35089 derangval 35147 setinds 35759 dfon2lem3 35766 dfon2lem7 35770 dfrecs2 35931 dfrdg4 35932 isfne 36320 finixpnum 37592 mblfinlem1 37644 mbfresfi 37653 indexdom 37721 heibor1lem 37796 isexid2 37842 ismndo2 37861 rngomndo 37922 pridl 38024 smprngopr 38039 ispridlc 38057 sn-isghm 42654 setindtrs 43007 dford3lem2 43009 dfac11 43044 rp-intrabeq 43203 rp-unirabeq 43204 rp-brsslt 43405 mnuop123d 44244 relpeq4 44930 trfr 44945 permac8prim 44997 fnchoice 45016 axccdom 45209 axccd 45216 stoweidlem31 46022 stoweidlem57 46048 fourierdlem80 46177 fourierdlem103 46200 fourierdlem104 46201 isvonmbl 46629 paireqne 47505 requad2 47617 nelsubc3lem 49052 isthinc 49401 0thincg 49440 cnelsubclem 49585 bnd2d 49663 |
| Copyright terms: Public domain | W3C validator |