| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3297 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3083 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3083 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: raleqi 3299 raleqdv 3301 raleleq 3317 sbralieALT 3329 r19.2zb 4462 inteq 4916 iineq1 4976 frsn 5729 fncnv 6592 isoeq4 7298 onminex 7781 tfisg 7833 tfinds 7839 f1oweALT 7954 frxp 8108 frxp2 8126 poseq 8140 frrlem1 8268 frrlem13 8280 tfrlem1 8347 tfrlem12 8360 omeulem1 8549 ixpeq1 8884 undifixp 8910 ac6sfi 9238 frfi 9239 iunfi 9301 indexfi 9318 supeq1 9403 supeq2 9406 brttrcl2 9674 ssttrcl 9675 ttrcltr 9676 bnd2 9853 acneq 10003 aceq3lem 10080 dfac5lem4 10086 dfac5lem4OLD 10088 dfac8 10096 dfac9 10097 kmlem1 10111 kmlem10 10120 kmlem13 10123 cfval 10207 axcc2lem 10396 axcc4dom 10401 axdc3lem3 10412 axdc3lem4 10413 ac4c 10436 ac5 10437 ac6sg 10448 zorn2lem7 10462 xrsupsslem 13274 xrinfmsslem 13275 xrsupss 13276 xrinfmss 13277 fsuppmapnn0fiubex 13964 rexanuz 15319 rexfiuz 15321 modfsummod 15767 gcdcllem3 16478 lcmfval 16598 lcmf0val 16599 lcmfunsnlem 16618 coprmprod 16638 coprmproddvds 16640 isprs 18264 drsdirfi 18273 isdrs2 18274 ispos 18282 pospropd 18293 lubeldm 18319 lubval 18322 glbeldm 18332 glbval 18335 istos 18384 isdlat 18488 mgmhmpropd 18632 mhmpropd 18726 isghm 19154 isghmOLD 19155 cntzval 19260 efgval 19654 iscmn 19726 rnghmval 20356 dfrhm2 20390 zrrnghm 20452 lidldvgen 21251 ocvval 21583 isobs 21636 coe1fzgsumd 22198 evl1gsumd 22251 mat0dimcrng 22364 mdetunilem9 22514 ist0 23214 cmpcovf 23285 is1stc 23335 2ndc1stc 23345 isref 23403 txflf 23900 ustuqtop4 24139 iscfilu 24182 ispsmet 24199 ismet 24218 isxmet 24219 cncfval 24788 lebnumlem3 24869 fmcfil 25179 iscfil3 25180 caucfil 25190 iscmet3 25200 cfilres 25203 minveclem3 25336 ovolfiniun 25409 finiunmbl 25452 volfiniun 25455 dvcn 25830 ulmval 26296 sltval2 27575 sltres 27581 nolesgn2o 27590 nogesgn1o 27592 nodense 27611 nosupbnd2lem1 27634 noinfbnd2lem1 27649 brsslt 27704 madebday 27818 negsprop 27948 mulsprop 28040 onsfi 28254 axtgcont1 28402 nb3grpr 29316 dfconngr1 30124 isconngr 30125 1conngr 30130 frgr0v 30198 isplig 30412 isgrpo 30433 isablo 30482 ocval 31216 acunirnmpt 32590 isomnd 33022 isorng 33284 prmidl 33418 ismbfm 34248 bnj865 34920 bnj1154 34996 bnj1296 35018 bnj1463 35052 wevgblacfn 35103 derangval 35161 setinds 35773 dfon2lem3 35780 dfon2lem7 35784 dfrecs2 35945 dfrdg4 35946 isfne 36334 finixpnum 37606 mblfinlem1 37658 mbfresfi 37667 indexdom 37735 heibor1lem 37810 isexid2 37856 ismndo2 37875 rngomndo 37936 pridl 38038 smprngopr 38053 ispridlc 38071 sn-isghm 42668 setindtrs 43021 dford3lem2 43023 dfac11 43058 rp-intrabeq 43217 rp-unirabeq 43218 rp-brsslt 43419 mnuop123d 44258 relpeq4 44944 trfr 44959 permac8prim 45011 fnchoice 45030 axccdom 45223 axccd 45230 stoweidlem31 46036 stoweidlem57 46062 fourierdlem80 46191 fourierdlem103 46214 fourierdlem104 46215 isvonmbl 46643 paireqne 47516 requad2 47628 nelsubc3lem 49063 isthinc 49412 0thincg 49451 cnelsubclem 49596 bnd2d 49674 |
| Copyright terms: Public domain | W3C validator |