| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3295 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqi 3297 raleqdv 3299 raleleq 3315 sbralieALT 3327 r19.2zb 4459 inteq 4913 iineq1 4973 frsn 5726 fncnv 6589 isoeq4 7295 onminex 7778 tfisg 7830 tfinds 7836 f1oweALT 7951 frxp 8105 frxp2 8123 poseq 8137 frrlem1 8265 frrlem13 8277 tfrlem1 8344 tfrlem12 8357 omeulem1 8546 ixpeq1 8881 undifixp 8907 ac6sfi 9231 frfi 9232 iunfi 9294 indexfi 9311 supeq1 9396 supeq2 9399 brttrcl2 9667 ssttrcl 9668 ttrcltr 9669 bnd2 9846 acneq 9996 aceq3lem 10073 dfac5lem4 10079 dfac5lem4OLD 10081 dfac8 10089 dfac9 10090 kmlem1 10104 kmlem10 10113 kmlem13 10116 cfval 10200 axcc2lem 10389 axcc4dom 10394 axdc3lem3 10405 axdc3lem4 10406 ac4c 10429 ac5 10430 ac6sg 10441 zorn2lem7 10455 xrsupsslem 13267 xrinfmsslem 13268 xrsupss 13269 xrinfmss 13270 fsuppmapnn0fiubex 13957 rexanuz 15312 rexfiuz 15314 modfsummod 15760 gcdcllem3 16471 lcmfval 16591 lcmf0val 16592 lcmfunsnlem 16611 coprmprod 16631 coprmproddvds 16633 isprs 18257 drsdirfi 18266 isdrs2 18267 ispos 18275 pospropd 18286 lubeldm 18312 lubval 18315 glbeldm 18325 glbval 18328 istos 18377 isdlat 18481 mgmhmpropd 18625 mhmpropd 18719 isghm 19147 isghmOLD 19148 cntzval 19253 efgval 19647 iscmn 19719 rnghmval 20349 dfrhm2 20383 zrrnghm 20445 lidldvgen 21244 ocvval 21576 isobs 21629 coe1fzgsumd 22191 evl1gsumd 22244 mat0dimcrng 22357 mdetunilem9 22507 ist0 23207 cmpcovf 23278 is1stc 23328 2ndc1stc 23338 isref 23396 txflf 23893 ustuqtop4 24132 iscfilu 24175 ispsmet 24192 ismet 24211 isxmet 24212 cncfval 24781 lebnumlem3 24862 fmcfil 25172 iscfil3 25173 caucfil 25183 iscmet3 25193 cfilres 25196 minveclem3 25329 ovolfiniun 25402 finiunmbl 25445 volfiniun 25448 dvcn 25823 ulmval 26289 sltval2 27568 sltres 27574 nolesgn2o 27583 nogesgn1o 27585 nodense 27604 nosupbnd2lem1 27627 noinfbnd2lem1 27642 brsslt 27697 madebday 27811 negsprop 27941 mulsprop 28033 onsfi 28247 axtgcont1 28395 nb3grpr 29309 dfconngr1 30117 isconngr 30118 1conngr 30123 frgr0v 30191 isplig 30405 isgrpo 30426 isablo 30475 ocval 31209 acunirnmpt 32583 isomnd 33015 isorng 33277 prmidl 33411 ismbfm 34241 bnj865 34913 bnj1154 34989 bnj1296 35011 bnj1463 35045 wevgblacfn 35096 derangval 35154 setinds 35766 dfon2lem3 35773 dfon2lem7 35777 dfrecs2 35938 dfrdg4 35939 isfne 36327 finixpnum 37599 mblfinlem1 37651 mbfresfi 37660 indexdom 37728 heibor1lem 37803 isexid2 37849 ismndo2 37868 rngomndo 37929 pridl 38031 smprngopr 38046 ispridlc 38064 sn-isghm 42661 setindtrs 43014 dford3lem2 43016 dfac11 43051 rp-intrabeq 43210 rp-unirabeq 43211 rp-brsslt 43412 mnuop123d 44251 relpeq4 44937 trfr 44952 permac8prim 45004 fnchoice 45023 axccdom 45216 axccd 45223 stoweidlem31 46029 stoweidlem57 46055 fourierdlem80 46184 fourierdlem103 46207 fourierdlem104 46208 isvonmbl 46636 paireqne 47512 requad2 47624 nelsubc3lem 49059 isthinc 49408 0thincg 49447 cnelsubclem 49592 bnd2d 49670 |
| Copyright terms: Public domain | W3C validator |