| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3292 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐵 ¬ 𝜑)) | |
| 2 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 𝜑)) |
| 5 | 4 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqi 3294 raleqdv 3296 raleleq 3312 sbralieALT 3324 r19.2zb 4455 inteq 4909 iineq1 4969 frsn 5719 fncnv 6573 isoeq4 7277 onminex 7758 tfisg 7810 tfinds 7816 f1oweALT 7930 frxp 8082 frxp2 8100 poseq 8114 frrlem1 8242 frrlem13 8254 tfrlem1 8321 tfrlem12 8334 omeulem1 8523 ixpeq1 8858 undifixp 8884 ac6sfi 9207 frfi 9208 iunfi 9270 indexfi 9287 supeq1 9372 supeq2 9375 brttrcl2 9643 ssttrcl 9644 ttrcltr 9645 bnd2 9822 acneq 9972 aceq3lem 10049 dfac5lem4 10055 dfac5lem4OLD 10057 dfac8 10065 dfac9 10066 kmlem1 10080 kmlem10 10089 kmlem13 10092 cfval 10176 axcc2lem 10365 axcc4dom 10370 axdc3lem3 10381 axdc3lem4 10382 ac4c 10405 ac5 10406 ac6sg 10417 zorn2lem7 10431 xrsupsslem 13243 xrinfmsslem 13244 xrsupss 13245 xrinfmss 13246 fsuppmapnn0fiubex 13933 rexanuz 15288 rexfiuz 15290 modfsummod 15736 gcdcllem3 16447 lcmfval 16567 lcmf0val 16568 lcmfunsnlem 16587 coprmprod 16607 coprmproddvds 16609 isprs 18233 drsdirfi 18242 isdrs2 18243 ispos 18251 pospropd 18262 lubeldm 18288 lubval 18291 glbeldm 18301 glbval 18304 istos 18353 isdlat 18457 mgmhmpropd 18601 mhmpropd 18695 isghm 19123 isghmOLD 19124 cntzval 19229 efgval 19623 iscmn 19695 rnghmval 20325 dfrhm2 20359 zrrnghm 20421 lidldvgen 21220 ocvval 21552 isobs 21605 coe1fzgsumd 22167 evl1gsumd 22220 mat0dimcrng 22333 mdetunilem9 22483 ist0 23183 cmpcovf 23254 is1stc 23304 2ndc1stc 23314 isref 23372 txflf 23869 ustuqtop4 24108 iscfilu 24151 ispsmet 24168 ismet 24187 isxmet 24188 cncfval 24757 lebnumlem3 24838 fmcfil 25148 iscfil3 25149 caucfil 25159 iscmet3 25169 cfilres 25172 minveclem3 25305 ovolfiniun 25378 finiunmbl 25421 volfiniun 25424 dvcn 25799 ulmval 26265 sltval2 27544 sltres 27550 nolesgn2o 27559 nogesgn1o 27561 nodense 27580 nosupbnd2lem1 27603 noinfbnd2lem1 27618 brsslt 27673 madebday 27787 negsprop 27917 mulsprop 28009 onsfi 28223 axtgcont1 28371 nb3grpr 29285 dfconngr1 30090 isconngr 30091 1conngr 30096 frgr0v 30164 isplig 30378 isgrpo 30399 isablo 30448 ocval 31182 acunirnmpt 32556 isomnd 32988 isorng 33250 prmidl 33384 ismbfm 34214 bnj865 34886 bnj1154 34962 bnj1296 34984 bnj1463 35018 wevgblacfn 35069 derangval 35127 setinds 35739 dfon2lem3 35746 dfon2lem7 35750 dfrecs2 35911 dfrdg4 35912 isfne 36300 finixpnum 37572 mblfinlem1 37624 mbfresfi 37633 indexdom 37701 heibor1lem 37776 isexid2 37822 ismndo2 37841 rngomndo 37902 pridl 38004 smprngopr 38019 ispridlc 38037 sn-isghm 42634 setindtrs 42987 dford3lem2 42989 dfac11 43024 rp-intrabeq 43183 rp-unirabeq 43184 rp-brsslt 43385 mnuop123d 44224 relpeq4 44910 trfr 44925 permac8prim 44977 fnchoice 44996 axccdom 45189 axccd 45196 stoweidlem31 46002 stoweidlem57 46028 fourierdlem80 46157 fourierdlem103 46180 fourierdlem104 46181 isvonmbl 46609 paireqne 47485 requad2 47597 nelsubc3lem 49032 isthinc 49381 0thincg 49420 cnelsubclem 49565 bnd2d 49643 |
| Copyright terms: Public domain | W3C validator |