MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqOLD Structured version   Visualization version   GIF version

Theorem raleqOLD 3329
Description: Obsolete version of raleq 3316 as of 9-Mar-2025. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2129, ax-11 2146, and ax-12 2163. (Revised by Steven Nguyen, 30-Apr-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
raleqOLD (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem raleqOLD
StepHypRef Expression
1 biidd 262 . 2 (𝐴 = 𝐵 → (𝜑𝜑))
21raleqbi1dv 3327 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wral 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-cleq 2718  df-ral 3056  df-rex 3065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator