MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqOLD Structured version   Visualization version   GIF version

Theorem raleqOLD 3340
Description: Obsolete version of raleq 3323 as of 9-Mar-2025. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2141, ax-11 2157, and ax-12 2177. (Revised by Steven Nguyen, 30-Apr-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
raleqOLD (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem raleqOLD
StepHypRef Expression
1 biidd 262 . 2 (𝐴 = 𝐵 → (𝜑𝜑))
21raleqbi1dv 3338 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2729  df-ral 3062  df-rex 3071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator