| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidvv | Structured version Visualization version GIF version | ||
| Description: Version of rexeqbidv 3330 with additional disjoint variable conditions, not requiring ax-8 2109 nor df-clel 2808. (Contributed by Wolf Lammen, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| raleqbidvv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidvv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqbidvv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rexeqbidva 3316 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-rex 3060 |
| This theorem is referenced by: rexeqbi1dv 3322 constrsuc 33718 |
| Copyright terms: Public domain | W3C validator |