![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbidvv | Structured version Visualization version GIF version |
Description: Version of rexeqbidv 3335 with additional disjoint variable conditions, not requiring ax-8 2100 nor df-clel 2802. (Contributed by Wolf Lammen, 25-Sep-2024.) |
Ref | Expression |
---|---|
raleqbidvv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidvv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidvv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidvv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleqbidvv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rexeqbidva 3320 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-rex 3063 |
This theorem is referenced by: rexeqbi1dv 3326 |
Copyright terms: Public domain | W3C validator |