MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbidva Structured version   Visualization version   GIF version

Theorem rexeqbidva 3303
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1 (𝜑𝐴 = 𝐵)
raleqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexeqbidva (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rexeqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21rexbidva 3155 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
3 raleqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43rexeqdv 3297 . 2 (𝜑 → (∃𝑥𝐴 𝜒 ↔ ∃𝑥𝐵 𝜒))
52, 4bitrd 279 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-rex 3054
This theorem is referenced by:  rexeqbidvv  3306  catpropd  17646  addsval  27845  istrkgcb  28359  isperp  28615  perpcom  28616  eengtrkg  28889  eengtrkge  28890  opprqusdrng  33437  fldextrspunlsplem  33641  afsval  34635  matunitlindflem2  37584  rrxlines  48695
  Copyright terms: Public domain W3C validator