MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbidva Structured version   Visualization version   GIF version

Theorem rexeqbidva 3318
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1 (𝜑𝐴 = 𝐵)
raleqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexeqbidva (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rexeqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21rexbidva 3169 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
3 raleqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43rexeqdv 3310 . 2 (𝜑 → (∃𝑥𝐴 𝜒 ↔ ∃𝑥𝐵 𝜒))
52, 4bitrd 278 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-cleq 2728  df-ral 3062  df-rex 3071
This theorem is referenced by:  catpropd  17507  istrkgb  27018  istrkgcb  27019  istrkge  27020  isperp  27275  perpcom  27276  eengtrkg  27556  eengtrkge  27557  afsval  32864  addsval  34217  matunitlindflem2  35872  rrxlines  46419
  Copyright terms: Public domain W3C validator