| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidva | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidva 3154 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| 3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | rexeqdv 3293 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-rex 3057 |
| This theorem is referenced by: rexeqbidvv 3302 catpropd 17615 addsval 27905 istrkgcb 28434 isperp 28690 perpcom 28691 eengtrkg 28964 eengtrkge 28965 opprqusdrng 33458 fldextrspunlsplem 33686 afsval 34684 matunitlindflem2 37665 rrxlines 48773 |
| Copyright terms: Public domain | W3C validator |