![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbidva | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidva 3259 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | rexeqdv 3357 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | bitrd 271 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 |
This theorem is referenced by: catpropd 16721 istrkgb 25767 istrkgcb 25768 istrkge 25769 isperp 26024 perpcom 26025 eengtrkg 26285 eengtrkge 26286 afsval 31287 matunitlindflem2 33943 rrxlines 43277 |
Copyright terms: Public domain | W3C validator |