![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2820 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | rexbidv2 3175 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-rex 3072 |
This theorem is referenced by: frd 5636 supeq123d 9445 fpwwe2lem12 10637 vdwpc 16913 ramval 16941 mreexexlemd 17588 iscat 17616 iscatd 17617 catidex 17618 gsumval2a 18604 ismnddef 18627 mndpropd 18650 isgrp 18825 isgrpd2e 18841 cayleyth 19283 psgnfval 19368 iscyg 19747 ltbval 21598 opsrval 21601 scmatval 22006 pmatcollpw3fi1lem2 22289 pmatcollpw3fi1 22290 neiptopnei 22636 is1stc 22945 2ndc1stc 22955 2ndcsep 22963 islly 22972 isnlly 22973 ucnval 23782 imasdsf1olem 23879 met2ndc 24032 evthicc 24976 elmade2 27363 addsval 27446 mulsval 27565 istrkgb 27706 istrkge 27708 istrkgld 27710 legval 27835 ishpg 28010 iscgra 28060 isinag 28089 isleag 28098 nbgrval 28593 nb3grprlem2 28638 1loopgrvd0 28761 erclwwlkeq 29271 eucrctshift 29496 isplig 29729 nmoofval 30015 elrsp 32486 reprsuc 33627 istrkg2d 33678 iscvm 34250 cvmlift2lem13 34306 br8 34726 br6 34727 br4 34728 brsegle 35080 hilbert1.1 35126 pibp21 36296 poimirlem26 36514 poimirlem28 36516 poimirlem29 36517 cover2g 36584 isexid 36715 isrngo 36765 isrngod 36766 isgrpda 36823 lshpset 37848 cvrfval 38138 isatl 38169 ishlat1 38222 llnset 38376 lplnset 38400 lvolset 38443 lineset 38609 lcfl7N 40372 lcfrlem8 40420 lcfrlem9 40421 lcf1o 40422 hvmapffval 40629 hvmapfval 40630 hvmapval 40631 prjspval 41345 mzpcompact2lem 41489 eldioph 41496 aomclem8 41803 tfsconcatun 42087 clsk1independent 42797 ovnval 45257 sprval 46147 nnsum3primes4 46456 nnsum3primesprm 46458 nnsum3primesgbe 46460 wtgoldbnnsum4prm 46470 bgoldbnnsum3prm 46472 zlidlring 46826 uzlidlring 46827 lcoop 47092 ldepsnlinc 47189 nnpw2p 47272 lines 47417 iscnrm3r 47581 |
Copyright terms: Public domain | W3C validator |