| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3149 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: frd 5576 supeq123d 9340 fpwwe2lem12 10536 vdwpc 16892 ramval 16920 mreexexlemd 17550 iscat 17578 iscatd 17579 catidex 17580 gsumval2a 18559 ismnddef 18610 mndpropd 18633 isgrp 18818 isgrpd2e 18834 cayleyth 19294 psgnfval 19379 iscyg 19758 ltbval 21948 opsrval 21951 scmatval 22389 pmatcollpw3fi1lem2 22672 pmatcollpw3fi1 22673 neiptopnei 23017 is1stc 23326 2ndc1stc 23336 2ndcsep 23344 islly 23353 isnlly 23354 ucnval 24162 imasdsf1olem 24259 met2ndc 24409 evthicc 25358 elmade2 27782 addsval 27874 mulsval 28017 istrkgb 28400 istrkge 28402 istrkgld 28404 legval 28529 ishpg 28704 iscgra 28754 isinag 28783 isleag 28792 nbgrval 29281 nb3grprlem2 29326 1loopgrvd0 29450 erclwwlkeq 29962 eucrctshift 30187 isplig 30420 nmoofval 30706 erlval 33198 idomsubr 33248 elrsp 33309 1arithidom 33474 dfufd2lem 33486 fldextrspunlsp 33641 extdgfialglem1 33659 constrsuc 33705 reprsuc 34583 istrkg2d 34634 iscvm 35232 cvmlift2lem13 35288 br8 35729 br6 35730 br4 35731 brsegle 36082 hilbert1.1 36128 pibp21 37389 poimirlem26 37626 poimirlem28 37628 poimirlem29 37629 cover2g 37696 isexid 37827 isrngo 37877 isrngod 37878 isgrpda 37935 lshpset 38957 cvrfval 39247 isatl 39278 ishlat1 39331 llnset 39484 lplnset 39508 lvolset 39551 lineset 39717 lcfl7N 41480 lcfrlem8 41528 lcfrlem9 41529 lcf1o 41530 hvmapffval 41737 hvmapfval 41738 hvmapval 41739 prjspval 42576 mzpcompact2lem 42724 eldioph 42731 aomclem8 43034 tfsconcatun 43310 clsk1independent 44019 ovnval 46522 sprval 47463 nnsum3primes4 47772 nnsum3primesprm 47774 nnsum3primesgbe 47776 wtgoldbnnsum4prm 47786 bgoldbnnsum3prm 47788 clnbgrval 47806 gpg3kgrtriex 48073 grlimedgnedg 48115 zlidlring 48218 uzlidlring 48219 lcoop 48396 ldepsnlinc 48493 nnpw2p 48571 lines 48716 iscnrm3r 48932 |
| Copyright terms: Public domain | W3C validator |