| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3153 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: frd 5588 supeq123d 9377 fpwwe2lem12 10571 vdwpc 16927 ramval 16955 mreexexlemd 17585 iscat 17613 iscatd 17614 catidex 17615 gsumval2a 18594 ismnddef 18645 mndpropd 18668 isgrp 18853 isgrpd2e 18869 cayleyth 19329 psgnfval 19414 iscyg 19793 ltbval 21983 opsrval 21986 scmatval 22424 pmatcollpw3fi1lem2 22707 pmatcollpw3fi1 22708 neiptopnei 23052 is1stc 23361 2ndc1stc 23371 2ndcsep 23379 islly 23388 isnlly 23389 ucnval 24197 imasdsf1olem 24294 met2ndc 24444 evthicc 25393 elmade2 27817 addsval 27909 mulsval 28052 istrkgb 28435 istrkge 28437 istrkgld 28439 legval 28564 ishpg 28739 iscgra 28789 isinag 28818 isleag 28827 nbgrval 29316 nb3grprlem2 29361 1loopgrvd0 29485 erclwwlkeq 29997 eucrctshift 30222 isplig 30455 nmoofval 30741 erlval 33225 idomsubr 33275 elrsp 33336 1arithidom 33501 dfufd2lem 33513 fldextrspunlsp 33662 constrsuc 33721 reprsuc 34599 istrkg2d 34650 iscvm 35239 cvmlift2lem13 35295 br8 35736 br6 35737 br4 35738 brsegle 36089 hilbert1.1 36135 pibp21 37396 poimirlem26 37633 poimirlem28 37635 poimirlem29 37636 cover2g 37703 isexid 37834 isrngo 37884 isrngod 37885 isgrpda 37942 lshpset 38964 cvrfval 39254 isatl 39285 ishlat1 39338 llnset 39492 lplnset 39516 lvolset 39559 lineset 39725 lcfl7N 41488 lcfrlem8 41536 lcfrlem9 41537 lcf1o 41538 hvmapffval 41745 hvmapfval 41746 hvmapval 41747 prjspval 42584 mzpcompact2lem 42732 eldioph 42739 aomclem8 43043 tfsconcatun 43319 clsk1independent 44028 ovnval 46532 sprval 47473 nnsum3primes4 47782 nnsum3primesprm 47784 nnsum3primesgbe 47786 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 clnbgrval 47816 gpg3kgrtriex 48073 zlidlring 48215 uzlidlring 48216 lcoop 48393 ldepsnlinc 48490 nnpw2p 48568 lines 48713 iscnrm3r 48929 |
| Copyright terms: Public domain | W3C validator |