Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2138, ax-11 2155, and ax-12 2172 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2825 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | rexbidv2 3225 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-rex 3071 |
This theorem is referenced by: frd 5549 supeq123d 9218 fpwwe2lem12 10407 vdwpc 16690 ramval 16718 mreexexlemd 17362 iscat 17390 iscatd 17391 catidex 17392 gsumval2a 18378 ismnddef 18396 mndpropd 18419 isgrp 18592 isgrpd2e 18607 cayleyth 19032 psgnfval 19117 iscyg 19488 ltbval 21253 opsrval 21256 scmatval 21662 pmatcollpw3fi1lem2 21945 pmatcollpw3fi1 21946 neiptopnei 22292 is1stc 22601 2ndc1stc 22611 2ndcsep 22619 islly 22628 isnlly 22629 ucnval 23438 imasdsf1olem 23535 met2ndc 23688 evthicc 24632 istrkgld 26829 legval 26954 ishpg 27129 iscgra 27179 isinag 27208 isleag 27217 nbgrval 27712 nb3grprlem2 27757 1loopgrvd0 27880 erclwwlkeq 28391 eucrctshift 28616 isplig 28847 nmoofval 29133 elrsp 31578 reprsuc 32604 istrkg2d 32655 iscvm 33230 cvmlift2lem13 33286 br8 33732 br6 33733 br4 33734 elmade2 34061 addsval 34135 brsegle 34419 hilbert1.1 34465 pibp21 35595 poimirlem26 35812 poimirlem28 35814 poimirlem29 35815 cover2g 35882 isexid 36014 isrngo 36064 isrngod 36065 isgrpda 36122 lshpset 36999 cvrfval 37289 isatl 37320 ishlat1 37373 llnset 37526 lplnset 37550 lvolset 37593 lineset 37759 lcfl7N 39522 lcfrlem8 39570 lcfrlem9 39571 lcf1o 39572 hvmapffval 39779 hvmapfval 39780 hvmapval 39781 prjspval 40449 mzpcompact2lem 40580 eldioph 40587 aomclem8 40893 clsk1independent 41663 ovnval 44086 sprval 44942 nnsum3primes4 45251 nnsum3primesprm 45253 nnsum3primesgbe 45255 wtgoldbnnsum4prm 45265 bgoldbnnsum3prm 45267 zlidlring 45497 uzlidlring 45498 lcoop 45763 ldepsnlinc 45860 nnpw2p 45943 lines 46088 iscnrm3r 46253 |
Copyright terms: Public domain | W3C validator |