| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3153 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: frd 5595 supeq123d 9401 fpwwe2lem12 10595 vdwpc 16951 ramval 16979 mreexexlemd 17605 iscat 17633 iscatd 17634 catidex 17635 gsumval2a 18612 ismnddef 18663 mndpropd 18686 isgrp 18871 isgrpd2e 18887 cayleyth 19345 psgnfval 19430 iscyg 19809 ltbval 21950 opsrval 21953 scmatval 22391 pmatcollpw3fi1lem2 22674 pmatcollpw3fi1 22675 neiptopnei 23019 is1stc 23328 2ndc1stc 23338 2ndcsep 23346 islly 23355 isnlly 23356 ucnval 24164 imasdsf1olem 24261 met2ndc 24411 evthicc 25360 elmade2 27780 addsval 27869 mulsval 28012 istrkgb 28382 istrkge 28384 istrkgld 28386 legval 28511 ishpg 28686 iscgra 28736 isinag 28765 isleag 28774 nbgrval 29263 nb3grprlem2 29308 1loopgrvd0 29432 erclwwlkeq 29947 eucrctshift 30172 isplig 30405 nmoofval 30691 erlval 33209 idomsubr 33259 elrsp 33343 1arithidom 33508 dfufd2lem 33520 fldextrspunlsp 33669 constrsuc 33728 reprsuc 34606 istrkg2d 34657 iscvm 35246 cvmlift2lem13 35302 br8 35743 br6 35744 br4 35745 brsegle 36096 hilbert1.1 36142 pibp21 37403 poimirlem26 37640 poimirlem28 37642 poimirlem29 37643 cover2g 37710 isexid 37841 isrngo 37891 isrngod 37892 isgrpda 37949 lshpset 38971 cvrfval 39261 isatl 39292 ishlat1 39345 llnset 39499 lplnset 39523 lvolset 39566 lineset 39732 lcfl7N 41495 lcfrlem8 41543 lcfrlem9 41544 lcf1o 41545 hvmapffval 41752 hvmapfval 41753 hvmapval 41754 prjspval 42591 mzpcompact2lem 42739 eldioph 42746 aomclem8 43050 tfsconcatun 43326 clsk1independent 44035 ovnval 46539 sprval 47477 nnsum3primes4 47786 nnsum3primesprm 47788 nnsum3primesgbe 47790 wtgoldbnnsum4prm 47800 bgoldbnnsum3prm 47802 clnbgrval 47820 gpg3kgrtriex 48077 zlidlring 48219 uzlidlring 48220 lcoop 48397 ldepsnlinc 48494 nnpw2p 48572 lines 48717 iscnrm3r 48933 |
| Copyright terms: Public domain | W3C validator |