| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3153 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: frd 5588 supeq123d 9377 fpwwe2lem12 10571 vdwpc 16927 ramval 16955 mreexexlemd 17581 iscat 17609 iscatd 17610 catidex 17611 gsumval2a 18588 ismnddef 18639 mndpropd 18662 isgrp 18847 isgrpd2e 18863 cayleyth 19321 psgnfval 19406 iscyg 19785 ltbval 21926 opsrval 21929 scmatval 22367 pmatcollpw3fi1lem2 22650 pmatcollpw3fi1 22651 neiptopnei 22995 is1stc 23304 2ndc1stc 23314 2ndcsep 23322 islly 23331 isnlly 23332 ucnval 24140 imasdsf1olem 24237 met2ndc 24387 evthicc 25336 elmade2 27756 addsval 27845 mulsval 27988 istrkgb 28358 istrkge 28360 istrkgld 28362 legval 28487 ishpg 28662 iscgra 28712 isinag 28741 isleag 28750 nbgrval 29239 nb3grprlem2 29284 1loopgrvd0 29408 erclwwlkeq 29920 eucrctshift 30145 isplig 30378 nmoofval 30664 erlval 33182 idomsubr 33232 elrsp 33316 1arithidom 33481 dfufd2lem 33493 fldextrspunlsp 33642 constrsuc 33701 reprsuc 34579 istrkg2d 34630 iscvm 35219 cvmlift2lem13 35275 br8 35716 br6 35717 br4 35718 brsegle 36069 hilbert1.1 36115 pibp21 37376 poimirlem26 37613 poimirlem28 37615 poimirlem29 37616 cover2g 37683 isexid 37814 isrngo 37864 isrngod 37865 isgrpda 37922 lshpset 38944 cvrfval 39234 isatl 39265 ishlat1 39318 llnset 39472 lplnset 39496 lvolset 39539 lineset 39705 lcfl7N 41468 lcfrlem8 41516 lcfrlem9 41517 lcf1o 41518 hvmapffval 41725 hvmapfval 41726 hvmapval 41727 prjspval 42564 mzpcompact2lem 42712 eldioph 42719 aomclem8 43023 tfsconcatun 43299 clsk1independent 44008 ovnval 46512 sprval 47453 nnsum3primes4 47762 nnsum3primesprm 47764 nnsum3primesgbe 47766 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 clnbgrval 47796 gpg3kgrtriex 48053 zlidlring 48195 uzlidlring 48196 lcoop 48373 ldepsnlinc 48470 nnpw2p 48548 lines 48693 iscnrm3r 48909 |
| Copyright terms: Public domain | W3C validator |