| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2142, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2821 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3161 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-rex 3062 |
| This theorem is referenced by: frd 5615 supeq123d 9467 fpwwe2lem12 10661 vdwpc 17005 ramval 17033 mreexexlemd 17661 iscat 17689 iscatd 17690 catidex 17691 gsumval2a 18668 ismnddef 18719 mndpropd 18742 isgrp 18927 isgrpd2e 18943 cayleyth 19401 psgnfval 19486 iscyg 19865 ltbval 22006 opsrval 22009 scmatval 22447 pmatcollpw3fi1lem2 22730 pmatcollpw3fi1 22731 neiptopnei 23075 is1stc 23384 2ndc1stc 23394 2ndcsep 23402 islly 23411 isnlly 23412 ucnval 24220 imasdsf1olem 24317 met2ndc 24467 evthicc 25417 elmade2 27837 addsval 27926 mulsval 28069 istrkgb 28439 istrkge 28441 istrkgld 28443 legval 28568 ishpg 28743 iscgra 28793 isinag 28822 isleag 28831 nbgrval 29320 nb3grprlem2 29365 1loopgrvd0 29489 erclwwlkeq 30004 eucrctshift 30229 isplig 30462 nmoofval 30748 erlval 33258 idomsubr 33308 elrsp 33392 1arithidom 33557 dfufd2lem 33569 fldextrspunlsp 33720 constrsuc 33777 reprsuc 34652 istrkg2d 34703 iscvm 35286 cvmlift2lem13 35342 br8 35778 br6 35779 br4 35780 brsegle 36131 hilbert1.1 36177 pibp21 37438 poimirlem26 37675 poimirlem28 37677 poimirlem29 37678 cover2g 37745 isexid 37876 isrngo 37926 isrngod 37927 isgrpda 37984 lshpset 39001 cvrfval 39291 isatl 39322 ishlat1 39375 llnset 39529 lplnset 39553 lvolset 39596 lineset 39762 lcfl7N 41525 lcfrlem8 41573 lcfrlem9 41574 lcf1o 41575 hvmapffval 41782 hvmapfval 41783 hvmapval 41784 prjspval 42601 mzpcompact2lem 42749 eldioph 42756 aomclem8 43060 tfsconcatun 43336 clsk1independent 44045 ovnval 46550 sprval 47473 nnsum3primes4 47782 nnsum3primesprm 47784 nnsum3primesgbe 47786 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 clnbgrval 47816 gpg3kgrtriex 48071 zlidlring 48189 uzlidlring 48190 lcoop 48367 ldepsnlinc 48464 nnpw2p 48546 lines 48691 iscnrm3r 48902 |
| Copyright terms: Public domain | W3C validator |