![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2178 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | rexbidv2 3181 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-rex 3077 |
This theorem is referenced by: frd 5656 supeq123d 9519 fpwwe2lem12 10711 vdwpc 17027 ramval 17055 mreexexlemd 17702 iscat 17730 iscatd 17731 catidex 17732 gsumval2a 18723 ismnddef 18774 mndpropd 18797 isgrp 18979 isgrpd2e 18995 cayleyth 19457 psgnfval 19542 iscyg 19921 ltbval 22084 opsrval 22087 scmatval 22531 pmatcollpw3fi1lem2 22814 pmatcollpw3fi1 22815 neiptopnei 23161 is1stc 23470 2ndc1stc 23480 2ndcsep 23488 islly 23497 isnlly 23498 ucnval 24307 imasdsf1olem 24404 met2ndc 24557 evthicc 25513 elmade2 27925 addsval 28013 mulsval 28153 istrkgb 28481 istrkge 28483 istrkgld 28485 legval 28610 ishpg 28785 iscgra 28835 isinag 28864 isleag 28873 nbgrval 29371 nb3grprlem2 29416 1loopgrvd0 29540 erclwwlkeq 30050 eucrctshift 30275 isplig 30508 nmoofval 30794 erlval 33230 idomsubr 33276 elrsp 33365 1arithidom 33530 dfufd2lem 33542 constrsuc 33728 reprsuc 34592 istrkg2d 34643 iscvm 35227 cvmlift2lem13 35283 br8 35718 br6 35719 br4 35720 brsegle 36072 hilbert1.1 36118 pibp21 37381 poimirlem26 37606 poimirlem28 37608 poimirlem29 37609 cover2g 37676 isexid 37807 isrngo 37857 isrngod 37858 isgrpda 37915 lshpset 38934 cvrfval 39224 isatl 39255 ishlat1 39308 llnset 39462 lplnset 39486 lvolset 39529 lineset 39695 lcfl7N 41458 lcfrlem8 41506 lcfrlem9 41507 lcf1o 41508 hvmapffval 41715 hvmapfval 41716 hvmapval 41717 prjspval 42558 mzpcompact2lem 42707 eldioph 42714 aomclem8 43018 tfsconcatun 43299 clsk1independent 44008 ovnval 46462 sprval 47353 nnsum3primes4 47662 nnsum3primesprm 47664 nnsum3primesgbe 47666 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 clnbgrval 47696 zlidlring 47957 uzlidlring 47958 lcoop 48140 ldepsnlinc 48237 nnpw2p 48320 lines 48465 iscnrm3r 48628 |
Copyright terms: Public domain | W3C validator |