![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | rexbidv2 3174 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-rex 3071 |
This theorem is referenced by: frd 5635 supeq123d 9447 fpwwe2lem12 10639 vdwpc 16915 ramval 16943 mreexexlemd 17590 iscat 17618 iscatd 17619 catidex 17620 gsumval2a 18606 ismnddef 18629 mndpropd 18652 isgrp 18827 isgrpd2e 18843 cayleyth 19285 psgnfval 19370 iscyg 19749 ltbval 21604 opsrval 21607 scmatval 22013 pmatcollpw3fi1lem2 22296 pmatcollpw3fi1 22297 neiptopnei 22643 is1stc 22952 2ndc1stc 22962 2ndcsep 22970 islly 22979 isnlly 22980 ucnval 23789 imasdsf1olem 23886 met2ndc 24039 evthicc 24983 elmade2 27371 addsval 27455 mulsval 27575 istrkgb 27744 istrkge 27746 istrkgld 27748 legval 27873 ishpg 28048 iscgra 28098 isinag 28127 isleag 28136 nbgrval 28631 nb3grprlem2 28676 1loopgrvd0 28799 erclwwlkeq 29309 eucrctshift 29534 isplig 29767 nmoofval 30053 elrsp 32531 reprsuc 33696 istrkg2d 33747 iscvm 34319 cvmlift2lem13 34375 br8 34795 br6 34796 br4 34797 brsegle 35149 hilbert1.1 35195 pibp21 36382 poimirlem26 36600 poimirlem28 36602 poimirlem29 36603 cover2g 36670 isexid 36801 isrngo 36851 isrngod 36852 isgrpda 36909 lshpset 37934 cvrfval 38224 isatl 38255 ishlat1 38308 llnset 38462 lplnset 38486 lvolset 38529 lineset 38695 lcfl7N 40458 lcfrlem8 40506 lcfrlem9 40507 lcf1o 40508 hvmapffval 40715 hvmapfval 40716 hvmapval 40717 prjspval 41427 mzpcompact2lem 41571 eldioph 41578 aomclem8 41885 tfsconcatun 42169 clsk1independent 42879 ovnval 45336 sprval 46226 nnsum3primes4 46535 nnsum3primesprm 46537 nnsum3primesgbe 46539 wtgoldbnnsum4prm 46549 bgoldbnnsum3prm 46551 zlidlring 46905 uzlidlring 46906 lcoop 47170 ldepsnlinc 47267 nnpw2p 47350 lines 47495 iscnrm3r 47659 |
Copyright terms: Public domain | W3C validator |