| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2817 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 5 | 4 | rexbidv2 3152 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-rex 3057 |
| This theorem is referenced by: frd 5571 supeq123d 9334 fpwwe2lem12 10533 vdwpc 16892 ramval 16920 mreexexlemd 17550 iscat 17578 iscatd 17579 catidex 17580 gsumval2a 18593 ismnddef 18644 mndpropd 18667 isgrp 18852 isgrpd2e 18868 cayleyth 19327 psgnfval 19412 iscyg 19791 ltbval 21978 opsrval 21981 scmatval 22419 pmatcollpw3fi1lem2 22702 pmatcollpw3fi1 22703 neiptopnei 23047 is1stc 23356 2ndc1stc 23366 2ndcsep 23374 islly 23383 isnlly 23384 ucnval 24191 imasdsf1olem 24288 met2ndc 24438 evthicc 25387 elmade2 27813 addsval 27905 mulsval 28048 istrkgb 28433 istrkge 28435 istrkgld 28437 legval 28562 ishpg 28737 iscgra 28787 isinag 28816 isleag 28825 nbgrval 29314 nb3grprlem2 29359 1loopgrvd0 29483 erclwwlkeq 29998 eucrctshift 30223 isplig 30456 nmoofval 30742 erlval 33225 idomsubr 33275 elrsp 33337 1arithidom 33502 dfufd2lem 33514 fldextrspunlsp 33687 extdgfialglem1 33705 constrsuc 33751 reprsuc 34628 istrkg2d 34679 iscvm 35303 cvmlift2lem13 35359 br8 35800 br6 35801 br4 35802 brsegle 36152 hilbert1.1 36198 pibp21 37459 poimirlem26 37696 poimirlem28 37698 poimirlem29 37699 cover2g 37766 isexid 37897 isrngo 37947 isrngod 37948 isgrpda 38005 lshpset 39087 cvrfval 39377 isatl 39408 ishlat1 39461 llnset 39614 lplnset 39638 lvolset 39681 lineset 39847 lcfl7N 41610 lcfrlem8 41658 lcfrlem9 41659 lcf1o 41660 hvmapffval 41867 hvmapfval 41868 hvmapval 41869 prjspval 42706 mzpcompact2lem 42854 eldioph 42861 aomclem8 43164 tfsconcatun 43440 clsk1independent 44149 ovnval 46649 sprval 47589 nnsum3primes4 47898 nnsum3primesprm 47900 nnsum3primesgbe 47902 wtgoldbnnsum4prm 47912 bgoldbnnsum3prm 47914 clnbgrval 47932 gpg3kgrtriex 48199 grlimedgnedg 48241 zlidlring 48344 uzlidlring 48345 lcoop 48522 ldepsnlinc 48619 nnpw2p 48697 lines 48842 iscnrm3r 49058 |
| Copyright terms: Public domain | W3C validator |