Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | rexbidv2 3223 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-rex 3069 |
This theorem is referenced by: frd 5539 supeq123d 9139 fpwwe2lem12 10329 vdwpc 16609 ramval 16637 mreexexlemd 17270 iscat 17298 iscatd 17299 catidex 17300 gsumval2a 18284 ismnddef 18302 mndpropd 18325 isgrp 18498 isgrpd2e 18513 cayleyth 18938 psgnfval 19023 iscyg 19394 ltbval 21154 opsrval 21157 scmatval 21561 pmatcollpw3fi1lem2 21844 pmatcollpw3fi1 21845 neiptopnei 22191 is1stc 22500 2ndc1stc 22510 2ndcsep 22518 islly 22527 isnlly 22528 ucnval 23337 imasdsf1olem 23434 met2ndc 23585 evthicc 24528 istrkgld 26724 legval 26849 ishpg 27024 iscgra 27074 isinag 27103 isleag 27112 nbgrval 27606 nb3grprlem2 27651 1loopgrvd0 27774 erclwwlkeq 28283 eucrctshift 28508 isplig 28739 nmoofval 29025 elrsp 31471 reprsuc 32495 istrkg2d 32546 iscvm 33121 cvmlift2lem13 33177 br8 33629 br6 33630 br4 33631 elmade2 33979 addsval 34053 brsegle 34337 hilbert1.1 34383 pibp21 35513 poimirlem26 35730 poimirlem28 35732 poimirlem29 35733 cover2g 35800 isexid 35932 isrngo 35982 isrngod 35983 isgrpda 36040 lshpset 36919 cvrfval 37209 isatl 37240 ishlat1 37293 llnset 37446 lplnset 37470 lvolset 37513 lineset 37679 lcfl7N 39442 lcfrlem8 39490 lcfrlem9 39491 lcf1o 39492 hvmapffval 39699 hvmapfval 39700 hvmapval 39701 prjspval 40363 mzpcompact2lem 40489 eldioph 40496 aomclem8 40802 clsk1independent 41545 ovnval 43969 sprval 44819 nnsum3primes4 45128 nnsum3primesprm 45130 nnsum3primesgbe 45132 wtgoldbnnsum4prm 45142 bgoldbnnsum3prm 45144 zlidlring 45374 uzlidlring 45375 lcoop 45640 ldepsnlinc 45737 nnpw2p 45820 lines 45965 iscnrm3r 46130 |
Copyright terms: Public domain | W3C validator |