| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbidvvOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexeqbidvv 3319 as of 9-Mar-2025. (Contributed by Wolf Lammen, 25-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| raleqbidvv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidvv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexeqbidvvOLD | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqbidvv.2 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 1, 3 | raleqbidvv 3317 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝜒)) |
| 5 | ralnex 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 6 | ralnex 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝜒 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜒) | |
| 7 | 4, 5, 6 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜒)) |
| 8 | 7 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3050 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |