Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbvw Structured version   Visualization version   GIF version

Theorem rexlimddvcbvw 41817
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41816. The equivalent of this theorem without the bound variable change is rexlimddv 3220. Version of rexlimddvcbv 41818 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.)
Hypotheses
Ref Expression
rexlimddvcbvw.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbvw.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbvw.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbvw (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbvw
StepHypRef Expression
1 rexlimddvcbvw.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbvw.3 . . . 4 (𝑥 = 𝑦 → (𝜃𝜒))
32cbvrexvw 3384 . . 3 (∃𝑥𝐴 𝜃 ↔ ∃𝑦𝐴 𝜒)
4 rexlimddvcbvw.2 . . . 4 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
54rexlimdvaa 3214 . . 3 (𝜑 → (∃𝑦𝐴 𝜒𝜓))
63, 5syl5bi 241 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
71, 6mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-clel 2816  df-ral 3069  df-rex 3070
This theorem is referenced by:  mnuprdlem1  41890  mnuprdlem2  41891
  Copyright terms: Public domain W3C validator