| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbvw | Structured version Visualization version GIF version | ||
| Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44217. The equivalent of this theorem without the bound variable change is rexlimddv 3137. Version of rexlimddvcbv 44219 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.) |
| Ref | Expression |
|---|---|
| rexlimddvcbvw.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
| rexlimddvcbvw.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
| rexlimddvcbvw.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimddvcbvw | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddvcbvw.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
| 2 | rexlimddvcbvw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | cbvrexvw 3209 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜃 ↔ ∃𝑦 ∈ 𝐴 𝜒) |
| 4 | rexlimddvcbvw.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
| 5 | 4 | rexlimdvaa 3132 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝜒 → 𝜓)) |
| 6 | 3, 5 | biimtrid 242 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2804 df-rex 3055 |
| This theorem is referenced by: mnuprdlem1 44284 mnuprdlem2 44285 |
| Copyright terms: Public domain | W3C validator |