Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbvw Structured version   Visualization version   GIF version

Theorem rexlimddvcbvw 44196
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44195. The equivalent of this theorem without the bound variable change is rexlimddv 3148. Version of rexlimddvcbv 44197 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.)
Hypotheses
Ref Expression
rexlimddvcbvw.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbvw.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbvw.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbvw (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbvw
StepHypRef Expression
1 rexlimddvcbvw.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbvw.3 . . . 4 (𝑥 = 𝑦 → (𝜃𝜒))
32cbvrexvw 3224 . . 3 (∃𝑥𝐴 𝜃 ↔ ∃𝑦𝐴 𝜒)
4 rexlimddvcbvw.2 . . . 4 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
54rexlimdvaa 3143 . . 3 (𝜑 → (∃𝑦𝐴 𝜒𝜓))
63, 5biimtrid 242 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
71, 6mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2808  df-rex 3060
This theorem is referenced by:  mnuprdlem1  44263  mnuprdlem2  44264
  Copyright terms: Public domain W3C validator