Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbvw Structured version   Visualization version   GIF version

Theorem rexlimddvcbvw 44197
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44196. The equivalent of this theorem without the bound variable change is rexlimddv 3148. Version of rexlimddvcbv 44198 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.)
Hypotheses
Ref Expression
rexlimddvcbvw.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbvw.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbvw.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbvw (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbvw
StepHypRef Expression
1 rexlimddvcbvw.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbvw.3 . . . 4 (𝑥 = 𝑦 → (𝜃𝜒))
32cbvrexvw 3225 . . 3 (∃𝑥𝐴 𝜃 ↔ ∃𝑦𝐴 𝜒)
4 rexlimddvcbvw.2 . . . 4 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
54rexlimdvaa 3143 . . 3 (𝜑 → (∃𝑦𝐴 𝜒𝜓))
63, 5biimtrid 242 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
71, 6mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2810  df-rex 3062
This theorem is referenced by:  mnuprdlem1  44263  mnuprdlem2  44264
  Copyright terms: Public domain W3C validator