| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbvw | Structured version Visualization version GIF version | ||
| Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44195. The equivalent of this theorem without the bound variable change is rexlimddv 3148. Version of rexlimddvcbv 44197 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by GG, 2-Apr-2024.) |
| Ref | Expression |
|---|---|
| rexlimddvcbvw.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
| rexlimddvcbvw.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
| rexlimddvcbvw.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimddvcbvw | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddvcbvw.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
| 2 | rexlimddvcbvw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
| 3 | 2 | cbvrexvw 3224 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜃 ↔ ∃𝑦 ∈ 𝐴 𝜒) |
| 4 | rexlimddvcbvw.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
| 5 | 4 | rexlimdvaa 3143 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝜒 → 𝜓)) |
| 6 | 3, 5 | biimtrid 242 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2808 df-rex 3060 |
| This theorem is referenced by: mnuprdlem1 44263 mnuprdlem2 44264 |
| Copyright terms: Public domain | W3C validator |