![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbvw | Structured version Visualization version GIF version |
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 42947. The equivalent of this theorem without the bound variable change is rexlimddv 3161. Version of rexlimddvcbv 42949 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.) |
Ref | Expression |
---|---|
rexlimddvcbvw.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
rexlimddvcbvw.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
rexlimddvcbvw.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexlimddvcbvw | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddvcbvw.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
2 | rexlimddvcbvw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
3 | 2 | cbvrexvw 3235 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜃 ↔ ∃𝑦 ∈ 𝐴 𝜒) |
4 | rexlimddvcbvw.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
5 | 4 | rexlimdvaa 3156 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝜒 → 𝜓)) |
6 | 3, 5 | biimtrid 241 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-clel 2810 df-rex 3071 |
This theorem is referenced by: mnuprdlem1 43021 mnuprdlem2 43022 |
Copyright terms: Public domain | W3C validator |