Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimddv | Structured version Visualization version GIF version |
Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
rexlimddv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
rexlimddv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
rexlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | rexlimddv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | rexlimdvaa 3215 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |