![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbv | Structured version Visualization version GIF version |
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44167. The equivalent of this theorem without the bound variable change is rexlimddv 3167. Usage of this theorem is discouraged because it depends on ax-13 2380, see rexlimddvcbvw 44168 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rexlimddvcbv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
rexlimddvcbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
rexlimddvcbv.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexlimddvcbv | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddvcbv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
2 | rexlimddvcbv.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
3 | rexlimddvcbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
4 | 2, 3 | rexlimdvaacbv 44167 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |