Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbv Structured version   Visualization version   GIF version

Theorem rexlimddvcbv 41680
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41678. The equivalent of this theorem without the bound variable change is rexlimddv 3220. Usage of this theorem is discouraged because it depends on ax-13 2373, see rexlimddvcbvw 41679 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexlimddvcbv.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbv.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbv.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbv (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbv
StepHypRef Expression
1 rexlimddvcbv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbv.3 . . 3 (𝑥 = 𝑦 → (𝜃𝜒))
3 rexlimddvcbv.2 . . 3 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
42, 3rexlimdvaacbv 41678 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
51, 4mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2112  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-10 2143  ax-11 2160  ax-12 2177  ax-13 2373
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator