Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbv Structured version   Visualization version   GIF version

Theorem rexlimddvcbv 44198
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44196. The equivalent of this theorem without the bound variable change is rexlimddv 3148. Usage of this theorem is discouraged because it depends on ax-13 2377, see rexlimddvcbvw 44197 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexlimddvcbv.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbv.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbv.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbv (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbv
StepHypRef Expression
1 rexlimddvcbv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbv.3 . . 3 (𝑥 = 𝑦 → (𝜃𝜒))
3 rexlimddvcbv.2 . . 3 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
42, 3rexlimdvaacbv 44196 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
51, 4mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator