| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbv | Structured version Visualization version GIF version | ||
| Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44196. The equivalent of this theorem without the bound variable change is rexlimddv 3148. Usage of this theorem is discouraged because it depends on ax-13 2377, see rexlimddvcbvw 44197 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rexlimddvcbv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
| rexlimddvcbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
| rexlimddvcbv.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimddvcbv | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddvcbv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
| 2 | rexlimddvcbv.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
| 3 | rexlimddvcbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
| 4 | 2, 3 | rexlimdvaacbv 44196 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |