| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbv | Structured version Visualization version GIF version | ||
| Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44246. The equivalent of this theorem without the bound variable change is rexlimddv 3139. Usage of this theorem is discouraged because it depends on ax-13 2372, see rexlimddvcbvw 44247 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rexlimddvcbv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
| rexlimddvcbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
| rexlimddvcbv.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimddvcbv | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddvcbv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
| 2 | rexlimddvcbv.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
| 3 | rexlimddvcbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
| 4 | 2, 3 | rexlimdvaacbv 44246 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |