Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbv | Structured version Visualization version GIF version |
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41816. The equivalent of this theorem without the bound variable change is rexlimddv 3220. Usage of this theorem is discouraged because it depends on ax-13 2372, see rexlimddvcbvw 41817 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rexlimddvcbv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
rexlimddvcbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
rexlimddvcbv.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexlimddvcbv | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddvcbv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
2 | rexlimddvcbv.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
3 | rexlimddvcbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
4 | 2, 3 | rexlimdvaacbv 41816 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |