![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddvcbv | Structured version Visualization version GIF version |
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43777. The equivalent of this theorem without the bound variable change is rexlimddv 3150. Usage of this theorem is discouraged because it depends on ax-13 2365, see rexlimddvcbvw 43778 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rexlimddvcbv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) |
rexlimddvcbv.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) |
rexlimddvcbv.3 | ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexlimddvcbv | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimddvcbv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) | |
2 | rexlimddvcbv.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) | |
3 | rexlimddvcbv.2 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) | |
4 | 2, 3 | rexlimdvaacbv 43777 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜃 → 𝜓)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∃wrex 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2365 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |