Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbv Structured version   Visualization version   GIF version

Theorem rexlimddvcbv 43779
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43777. The equivalent of this theorem without the bound variable change is rexlimddv 3150. Usage of this theorem is discouraged because it depends on ax-13 2365, see rexlimddvcbvw 43778 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexlimddvcbv.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbv.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbv.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbv (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbv
StepHypRef Expression
1 rexlimddvcbv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbv.3 . . 3 (𝑥 = 𝑦 → (𝜃𝜒))
3 rexlimddvcbv.2 . . 3 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
42, 3rexlimdvaacbv 43777 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
51, 4mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator