Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimddvcbv Structured version   Visualization version   GIF version

Theorem rexlimddvcbv 44248
Description: Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 44246. The equivalent of this theorem without the bound variable change is rexlimddv 3139. Usage of this theorem is discouraged because it depends on ax-13 2372, see rexlimddvcbvw 44247 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexlimddvcbv.1 (𝜑 → ∃𝑥𝐴 𝜃)
rexlimddvcbv.2 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
rexlimddvcbv.3 (𝑥 = 𝑦 → (𝜃𝜒))
Assertion
Ref Expression
rexlimddvcbv (𝜑𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑦   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)

Proof of Theorem rexlimddvcbv
StepHypRef Expression
1 rexlimddvcbv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜃)
2 rexlimddvcbv.3 . . 3 (𝑥 = 𝑦 → (𝜃𝜒))
3 rexlimddvcbv.2 . . 3 ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)
42, 3rexlimdvaacbv 44246 . 2 (𝜑 → (∃𝑥𝐴 𝜃𝜓))
51, 4mpd 15 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator