Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem1 Structured version   Visualization version   GIF version

Theorem 3cubeslem1 42700
Description: Lemma for 3cubes 42706. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))

Proof of Theorem 3cubeslem1
StepHypRef Expression
1 3cubeslem1.a . . . . 5 (𝜑𝐴 ∈ ℚ)
2 qre 12996 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
31, 2syl 17 . . . 4 (𝜑𝐴 ∈ ℝ)
4 0red 11265 . . . 4 (𝜑 → 0 ∈ ℝ)
53, 4lttri4d 11403 . . 3 (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
6 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7 0red 11265 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈ ℝ)
8 peano2re 11435 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈ ℝ)
109resqcld 14166 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈ ℝ)
11 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0)
129sqge0d 14178 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2))
136, 7, 10, 11, 12ltletrd 11422 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))
1413a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)))
153, 14mpand 695 . . . 4 (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2)))
16 0lt1 11786 . . . . . . . 8 0 < 1
1716a1i 11 . . . . . . 7 (𝐴 = 0 → 0 < 1)
18 id 22 . . . . . . 7 (𝐴 = 0 → 𝐴 = 0)
19 sq1 14235 . . . . . . . 8 (1↑2) = 1
2019a1i 11 . . . . . . 7 (𝐴 = 0 → (1↑2) = 1)
2117, 18, 203brtr4d 5174 . . . . . 6 (𝐴 = 0 → 𝐴 < (1↑2))
22 0cnd 11255 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
23 1cnd 11257 . . . . . . . . 9 (𝐴 = 0 → 1 ∈ ℂ)
2418oveq1d 7447 . . . . . . . . 9 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
2522, 23, 24comraddd 11476 . . . . . . . 8 (𝐴 = 0 → (𝐴 + 1) = (1 + 0))
26 1p0e1 12391 . . . . . . . 8 (1 + 0) = 1
2725, 26eqtrdi 2792 . . . . . . 7 (𝐴 = 0 → (𝐴 + 1) = 1)
2827oveq1d 7447 . . . . . 6 (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2))
2921, 28breqtrrd 5170 . . . . 5 (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))
3029a1i 11 . . . 4 (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)))
31 ax-1rid 11226 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) = 𝐴)
33 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
34 1red 11263 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 ∈ ℝ)
3533, 34readdcld 11291 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℝ)
36 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
37 0red 11265 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ∈ ℝ)
38 ltle 11350 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3937, 33, 38syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → 0 ≤ 𝐴))
4033ltp1d 12199 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < (𝐴 + 1))
4139, 40jctird 526 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → (0 ≤ 𝐴𝐴 < (𝐴 + 1))))
4236, 41mpd 15 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ 𝐴𝐴 < (𝐴 + 1)))
4334, 35jca 511 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ))
44 0le1 11787 . . . . . . . . . . 11 0 ≤ 1
4544a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 1)
46 1e0p1 12777 . . . . . . . . . . 11 1 = (0 + 1)
4737, 33, 34, 36ltadd1dd 11875 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 + 1) < (𝐴 + 1))
4846, 47eqbrtrid 5177 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (𝐴 + 1))
4943, 45, 48jca32 515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1))))
50 ltmul12a 12124 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5133, 35, 42, 49, 50syl1111anc 840 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5232, 51eqbrtrrd 5166 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1)))
5335recnd 11290 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℂ)
5453sqvald 14184 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1)))
5552, 54breqtrrd 5170 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))
5655a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
573, 56mpand 695 . . . 4 (𝜑 → (0 < 𝐴𝐴 < ((𝐴 + 1)↑2)))
5815, 30, 573jaod 1430 . . 3 (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
595, 58mpd 15 . 2 (𝜑𝐴 < ((𝐴 + 1)↑2))
603, 8syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
6160resqcld 14166 . . 3 (𝜑 → ((𝐴 + 1)↑2) ∈ ℝ)
623, 61posdifd 11851 . 2 (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴)))
6359, 62mpbid 232 1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493  2c2 12322  cq 12991  cexp 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-seq 14044  df-exp 14104
This theorem is referenced by:  3cubeslem2  42701
  Copyright terms: Public domain W3C validator