Proof of Theorem 3cubeslem1
| Step | Hyp | Ref
| Expression |
| 1 | | 3cubeslem1.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 2 | | qre 12974 |
. . . . 5
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | 0red 11243 |
. . . 4
⊢ (𝜑 → 0 ∈
ℝ) |
| 5 | 3, 4 | lttri4d 11381 |
. . 3
⊢ (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
| 6 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈
ℝ) |
| 7 | | 0red 11243 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈
ℝ) |
| 8 | | peano2re 11413 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈
ℝ) |
| 10 | 9 | resqcld 14148 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈
ℝ) |
| 11 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0) |
| 12 | 9 | sqge0d 14160 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2)) |
| 13 | 6, 7, 10, 11, 12 | ltletrd 11400 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)) |
| 14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))) |
| 15 | 3, 14 | mpand 695 |
. . . 4
⊢ (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2))) |
| 16 | | 0lt1 11764 |
. . . . . . . 8
⊢ 0 <
1 |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝐴 = 0 → 0 <
1) |
| 18 | | id 22 |
. . . . . . 7
⊢ (𝐴 = 0 → 𝐴 = 0) |
| 19 | | sq1 14218 |
. . . . . . . 8
⊢
(1↑2) = 1 |
| 20 | 19 | a1i 11 |
. . . . . . 7
⊢ (𝐴 = 0 → (1↑2) =
1) |
| 21 | 17, 18, 20 | 3brtr4d 5156 |
. . . . . 6
⊢ (𝐴 = 0 → 𝐴 < (1↑2)) |
| 22 | | 0cnd 11233 |
. . . . . . . . 9
⊢ (𝐴 = 0 → 0 ∈
ℂ) |
| 23 | | 1cnd 11235 |
. . . . . . . . 9
⊢ (𝐴 = 0 → 1 ∈
ℂ) |
| 24 | 18 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) |
| 25 | 22, 23, 24 | comraddd 11454 |
. . . . . . . 8
⊢ (𝐴 = 0 → (𝐴 + 1) = (1 + 0)) |
| 26 | | 1p0e1 12369 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
| 27 | 25, 26 | eqtrdi 2787 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐴 + 1) = 1) |
| 28 | 27 | oveq1d 7425 |
. . . . . 6
⊢ (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2)) |
| 29 | 21, 28 | breqtrrd 5152 |
. . . . 5
⊢ (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)) |
| 30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))) |
| 31 | | ax-1rid 11204 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 · 1) = 𝐴) |
| 33 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
| 34 | | 1red 11241 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 1 ∈
ℝ) |
| 35 | 33, 34 | readdcld 11269 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 + 1) ∈
ℝ) |
| 36 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < 𝐴) |
| 37 | | 0red 11243 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ∈
ℝ) |
| 38 | | ltle 11328 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 39 | 37, 33, 38 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < 𝐴 → 0 ≤ 𝐴)) |
| 40 | 33 | ltp1d 12177 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < (𝐴 + 1)) |
| 41 | 39, 40 | jctird 526 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 < (𝐴 + 1)))) |
| 42 | 36, 41 | mpd 15 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 ≤ 𝐴 ∧ 𝐴 < (𝐴 + 1))) |
| 43 | 34, 35 | jca 511 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 ∈ ℝ
∧ (𝐴 + 1) ∈
ℝ)) |
| 44 | | 0le1 11765 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
| 45 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ≤
1) |
| 46 | | 1e0p1 12755 |
. . . . . . . . . . 11
⊢ 1 = (0 +
1) |
| 47 | 37, 33, 34, 36 | ltadd1dd 11853 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 + 1) <
(𝐴 + 1)) |
| 48 | 46, 47 | eqbrtrid 5159 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 1 < (𝐴 + 1)) |
| 49 | 43, 45, 48 | jca32 515 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 ∈
ℝ ∧ (𝐴 + 1)
∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) |
| 50 | | ltmul12a 12102 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0
≤ 𝐴 ∧ 𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧
(𝐴 + 1) ∈ ℝ)
∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1))) |
| 51 | 33, 35, 42, 49, 50 | syl1111anc 840 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1))) |
| 52 | 32, 51 | eqbrtrrd 5148 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1))) |
| 53 | 35 | recnd 11268 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 + 1) ∈
ℂ) |
| 54 | 53 | sqvald 14166 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
| 55 | 52, 54 | breqtrrd 5152 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < ((𝐴 + 1)↑2)) |
| 56 | 55 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))) |
| 57 | 3, 56 | mpand 695 |
. . . 4
⊢ (𝜑 → (0 < 𝐴 → 𝐴 < ((𝐴 + 1)↑2))) |
| 58 | 15, 30, 57 | 3jaod 1431 |
. . 3
⊢ (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))) |
| 59 | 5, 58 | mpd 15 |
. 2
⊢ (𝜑 → 𝐴 < ((𝐴 + 1)↑2)) |
| 60 | 3, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
| 61 | 60 | resqcld 14148 |
. . 3
⊢ (𝜑 → ((𝐴 + 1)↑2) ∈
ℝ) |
| 62 | 3, 61 | posdifd 11829 |
. 2
⊢ (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴))) |
| 63 | 59, 62 | mpbid 232 |
1
⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) |