Proof of Theorem 3cubeslem1
Step | Hyp | Ref
| Expression |
1 | | 3cubeslem1.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℚ) |
2 | | qre 12693 |
. . . . 5
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | | 0red 10978 |
. . . 4
⊢ (𝜑 → 0 ∈
ℝ) |
5 | 3, 4 | lttri4d 11116 |
. . 3
⊢ (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴)) |
6 | | simpl 483 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈
ℝ) |
7 | | 0red 10978 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈
ℝ) |
8 | | peano2re 11148 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈
ℝ) |
10 | 9 | resqcld 13965 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈
ℝ) |
11 | | simpr 485 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0) |
12 | 9 | sqge0d 13966 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2)) |
13 | 6, 7, 10, 11, 12 | ltletrd 11135 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)) |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))) |
15 | 3, 14 | mpand 692 |
. . . 4
⊢ (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2))) |
16 | | 0lt1 11497 |
. . . . . . . 8
⊢ 0 <
1 |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝐴 = 0 → 0 <
1) |
18 | | id 22 |
. . . . . . 7
⊢ (𝐴 = 0 → 𝐴 = 0) |
19 | | sq1 13912 |
. . . . . . . 8
⊢
(1↑2) = 1 |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ (𝐴 = 0 → (1↑2) =
1) |
21 | 17, 18, 20 | 3brtr4d 5106 |
. . . . . 6
⊢ (𝐴 = 0 → 𝐴 < (1↑2)) |
22 | | 0cnd 10968 |
. . . . . . . . 9
⊢ (𝐴 = 0 → 0 ∈
ℂ) |
23 | | 1cnd 10970 |
. . . . . . . . 9
⊢ (𝐴 = 0 → 1 ∈
ℂ) |
24 | 18 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) |
25 | 22, 23, 24 | comraddd 11189 |
. . . . . . . 8
⊢ (𝐴 = 0 → (𝐴 + 1) = (1 + 0)) |
26 | | 1p0e1 12097 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
27 | 25, 26 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐴 + 1) = 1) |
28 | 27 | oveq1d 7290 |
. . . . . 6
⊢ (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2)) |
29 | 21, 28 | breqtrrd 5102 |
. . . . 5
⊢ (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))) |
31 | | ax-1rid 10941 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 · 1) = 𝐴) |
33 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
34 | | 1red 10976 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 1 ∈
ℝ) |
35 | 33, 34 | readdcld 11004 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 + 1) ∈
ℝ) |
36 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < 𝐴) |
37 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ∈
ℝ) |
38 | | ltle 11063 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) |
39 | 37, 33, 38 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < 𝐴 → 0 ≤ 𝐴)) |
40 | 33 | ltp1d 11905 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < (𝐴 + 1)) |
41 | 39, 40 | jctird 527 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 𝐴 < (𝐴 + 1)))) |
42 | 36, 41 | mpd 15 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 ≤ 𝐴 ∧ 𝐴 < (𝐴 + 1))) |
43 | 34, 35 | jca 512 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 ∈ ℝ
∧ (𝐴 + 1) ∈
ℝ)) |
44 | | 0le1 11498 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
45 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ≤
1) |
46 | | 1e0p1 12479 |
. . . . . . . . . . 11
⊢ 1 = (0 +
1) |
47 | 37, 33, 34, 36 | ltadd1dd 11586 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 + 1) <
(𝐴 + 1)) |
48 | 46, 47 | eqbrtrid 5109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 1 < (𝐴 + 1)) |
49 | 43, 45, 48 | jca32 516 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 ∈
ℝ ∧ (𝐴 + 1)
∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) |
50 | | ltmul12a 11831 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0
≤ 𝐴 ∧ 𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧
(𝐴 + 1) ∈ ℝ)
∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1))) |
51 | 33, 35, 42, 49, 50 | syl1111anc 837 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1))) |
52 | 32, 51 | eqbrtrrd 5098 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1))) |
53 | 35 | recnd 11003 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 + 1) ∈
ℂ) |
54 | 53 | sqvald 13861 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))) |
55 | 52, 54 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 < ((𝐴 + 1)↑2)) |
56 | 55 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))) |
57 | 3, 56 | mpand 692 |
. . . 4
⊢ (𝜑 → (0 < 𝐴 → 𝐴 < ((𝐴 + 1)↑2))) |
58 | 15, 30, 57 | 3jaod 1427 |
. . 3
⊢ (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))) |
59 | 5, 58 | mpd 15 |
. 2
⊢ (𝜑 → 𝐴 < ((𝐴 + 1)↑2)) |
60 | 3, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
61 | 60 | resqcld 13965 |
. . 3
⊢ (𝜑 → ((𝐴 + 1)↑2) ∈
ℝ) |
62 | 3, 61 | posdifd 11562 |
. 2
⊢ (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴))) |
63 | 59, 62 | mpbid 231 |
1
⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) |