Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem1 Structured version   Visualization version   GIF version

Theorem 3cubeslem1 42672
Description: Lemma for 3cubes 42678. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))

Proof of Theorem 3cubeslem1
StepHypRef Expression
1 3cubeslem1.a . . . . 5 (𝜑𝐴 ∈ ℚ)
2 qre 12993 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
31, 2syl 17 . . . 4 (𝜑𝐴 ∈ ℝ)
4 0red 11262 . . . 4 (𝜑 → 0 ∈ ℝ)
53, 4lttri4d 11400 . . 3 (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
6 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7 0red 11262 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈ ℝ)
8 peano2re 11432 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈ ℝ)
109resqcld 14162 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈ ℝ)
11 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0)
129sqge0d 14174 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2))
136, 7, 10, 11, 12ltletrd 11419 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))
1413a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)))
153, 14mpand 695 . . . 4 (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2)))
16 0lt1 11783 . . . . . . . 8 0 < 1
1716a1i 11 . . . . . . 7 (𝐴 = 0 → 0 < 1)
18 id 22 . . . . . . 7 (𝐴 = 0 → 𝐴 = 0)
19 sq1 14231 . . . . . . . 8 (1↑2) = 1
2019a1i 11 . . . . . . 7 (𝐴 = 0 → (1↑2) = 1)
2117, 18, 203brtr4d 5180 . . . . . 6 (𝐴 = 0 → 𝐴 < (1↑2))
22 0cnd 11252 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
23 1cnd 11254 . . . . . . . . 9 (𝐴 = 0 → 1 ∈ ℂ)
2418oveq1d 7446 . . . . . . . . 9 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
2522, 23, 24comraddd 11473 . . . . . . . 8 (𝐴 = 0 → (𝐴 + 1) = (1 + 0))
26 1p0e1 12388 . . . . . . . 8 (1 + 0) = 1
2725, 26eqtrdi 2791 . . . . . . 7 (𝐴 = 0 → (𝐴 + 1) = 1)
2827oveq1d 7446 . . . . . 6 (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2))
2921, 28breqtrrd 5176 . . . . 5 (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))
3029a1i 11 . . . 4 (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)))
31 ax-1rid 11223 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) = 𝐴)
33 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
34 1red 11260 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 ∈ ℝ)
3533, 34readdcld 11288 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℝ)
36 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
37 0red 11262 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ∈ ℝ)
38 ltle 11347 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3937, 33, 38syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → 0 ≤ 𝐴))
4033ltp1d 12196 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < (𝐴 + 1))
4139, 40jctird 526 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → (0 ≤ 𝐴𝐴 < (𝐴 + 1))))
4236, 41mpd 15 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ 𝐴𝐴 < (𝐴 + 1)))
4334, 35jca 511 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ))
44 0le1 11784 . . . . . . . . . . 11 0 ≤ 1
4544a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 1)
46 1e0p1 12773 . . . . . . . . . . 11 1 = (0 + 1)
4737, 33, 34, 36ltadd1dd 11872 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 + 1) < (𝐴 + 1))
4846, 47eqbrtrid 5183 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (𝐴 + 1))
4943, 45, 48jca32 515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1))))
50 ltmul12a 12121 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5133, 35, 42, 49, 50syl1111anc 840 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5232, 51eqbrtrrd 5172 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1)))
5335recnd 11287 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℂ)
5453sqvald 14180 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1)))
5552, 54breqtrrd 5176 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))
5655a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
573, 56mpand 695 . . . 4 (𝜑 → (0 < 𝐴𝐴 < ((𝐴 + 1)↑2)))
5815, 30, 573jaod 1428 . . 3 (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
595, 58mpd 15 . 2 (𝜑𝐴 < ((𝐴 + 1)↑2))
603, 8syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
6160resqcld 14162 . . 3 (𝜑 → ((𝐴 + 1)↑2) ∈ ℝ)
623, 61posdifd 11848 . 2 (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴)))
6359, 62mpbid 232 1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  2c2 12319  cq 12988  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-seq 14040  df-exp 14100
This theorem is referenced by:  3cubeslem2  42673
  Copyright terms: Public domain W3C validator