Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem1 Structured version   Visualization version   GIF version

Theorem 3cubeslem1 42717
Description: Lemma for 3cubes 42723. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))

Proof of Theorem 3cubeslem1
StepHypRef Expression
1 3cubeslem1.a . . . . 5 (𝜑𝐴 ∈ ℚ)
2 qre 12846 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
31, 2syl 17 . . . 4 (𝜑𝐴 ∈ ℝ)
4 0red 11110 . . . 4 (𝜑 → 0 ∈ ℝ)
53, 4lttri4d 11249 . . 3 (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
6 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7 0red 11110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈ ℝ)
8 peano2re 11281 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈ ℝ)
109resqcld 14027 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈ ℝ)
11 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0)
129sqge0d 14039 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2))
136, 7, 10, 11, 12ltletrd 11268 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))
1413a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)))
153, 14mpand 695 . . . 4 (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2)))
16 0lt1 11634 . . . . . . . 8 0 < 1
1716a1i 11 . . . . . . 7 (𝐴 = 0 → 0 < 1)
18 id 22 . . . . . . 7 (𝐴 = 0 → 𝐴 = 0)
19 sq1 14097 . . . . . . . 8 (1↑2) = 1
2019a1i 11 . . . . . . 7 (𝐴 = 0 → (1↑2) = 1)
2117, 18, 203brtr4d 5118 . . . . . 6 (𝐴 = 0 → 𝐴 < (1↑2))
22 0cnd 11100 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
23 1cnd 11102 . . . . . . . . 9 (𝐴 = 0 → 1 ∈ ℂ)
2418oveq1d 7356 . . . . . . . . 9 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
2522, 23, 24comraddd 11322 . . . . . . . 8 (𝐴 = 0 → (𝐴 + 1) = (1 + 0))
26 1p0e1 12239 . . . . . . . 8 (1 + 0) = 1
2725, 26eqtrdi 2782 . . . . . . 7 (𝐴 = 0 → (𝐴 + 1) = 1)
2827oveq1d 7356 . . . . . 6 (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2))
2921, 28breqtrrd 5114 . . . . 5 (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))
3029a1i 11 . . . 4 (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)))
31 ax-1rid 11071 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) = 𝐴)
33 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
34 1red 11108 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 ∈ ℝ)
3533, 34readdcld 11136 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℝ)
36 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
37 0red 11110 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ∈ ℝ)
38 ltle 11196 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3937, 33, 38syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → 0 ≤ 𝐴))
4033ltp1d 12047 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < (𝐴 + 1))
4139, 40jctird 526 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → (0 ≤ 𝐴𝐴 < (𝐴 + 1))))
4236, 41mpd 15 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ 𝐴𝐴 < (𝐴 + 1)))
4334, 35jca 511 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ))
44 0le1 11635 . . . . . . . . . . 11 0 ≤ 1
4544a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 1)
46 1e0p1 12625 . . . . . . . . . . 11 1 = (0 + 1)
4737, 33, 34, 36ltadd1dd 11723 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 + 1) < (𝐴 + 1))
4846, 47eqbrtrid 5121 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (𝐴 + 1))
4943, 45, 48jca32 515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1))))
50 ltmul12a 11972 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5133, 35, 42, 49, 50syl1111anc 840 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5232, 51eqbrtrrd 5110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1)))
5335recnd 11135 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℂ)
5453sqvald 14045 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1)))
5552, 54breqtrrd 5114 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))
5655a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
573, 56mpand 695 . . . 4 (𝜑 → (0 < 𝐴𝐴 < ((𝐴 + 1)↑2)))
5815, 30, 573jaod 1431 . . 3 (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
595, 58mpd 15 . 2 (𝜑𝐴 < ((𝐴 + 1)↑2))
603, 8syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
6160resqcld 14027 . . 3 (𝜑 → ((𝐴 + 1)↑2) ∈ ℝ)
623, 61posdifd 11699 . 2 (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴)))
6359, 62mpbid 232 1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339  2c2 12175  cq 12841  cexp 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-seq 13904  df-exp 13964
This theorem is referenced by:  3cubeslem2  42718
  Copyright terms: Public domain W3C validator