| Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > negexpidd | Structured version Visualization version GIF version | ||
| Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| Ref | Expression |
|---|---|
| negexpidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| negexpidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| negexpidd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| negexpidd | ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negexpidd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | negexpidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | reexpcld 14067 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
| 4 | 3 | recnd 11137 | . . 3 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 5 | 4 | negidd 11459 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0) |
| 6 | 1 | recnd 11137 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 7 | 6 | mulm1d 11566 | . . . . . . 7 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| 8 | 7 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → -𝐴 = (-1 · 𝐴)) |
| 9 | 8 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (-𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
| 10 | nn0z 12490 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ)) |
| 12 | negexpidd.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ 2 ∥ 𝑁) | |
| 13 | 11, 12 | jctird 526 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))) |
| 14 | 2, 13 | mpd 15 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) |
| 15 | m1expo 16283 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | |
| 16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)) |
| 17 | 14, 16 | mpd 15 | . . . . . . . 8 ⊢ (𝜑 → (-1↑𝑁) = -1) |
| 18 | 17 | oveq1d 7361 | . . . . . . 7 ⊢ (𝜑 → ((-1↑𝑁) · (𝐴↑𝑁)) = (-1 · (𝐴↑𝑁))) |
| 19 | 4 | mulm1d 11566 | . . . . . . 7 ⊢ (𝜑 → (-1 · (𝐴↑𝑁)) = -(𝐴↑𝑁)) |
| 20 | 18, 19 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
| 21 | neg1cn 12107 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → -1 ∈ ℂ) |
| 23 | 22, 6, 2 | mulexpd 14065 | . . . . . 6 ⊢ (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
| 24 | 20, 23 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
| 25 | 9, 24 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 26 | 25 | oveq2d 7362 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = ((𝐴↑𝑁) + -(𝐴↑𝑁))) |
| 27 | 26 | eqeq1d 2733 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0 ↔ ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0)) |
| 28 | 5, 27 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 -cneg 11342 2c2 12177 ℕ0cn0 12378 ℤcz 12465 ↑cexp 13965 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 df-dvds 16161 |
| This theorem is referenced by: 3cubeslem3r 42719 |
| Copyright terms: Public domain | W3C validator |