Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negexpidd Structured version   Visualization version   GIF version

Theorem negexpidd 40699
Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.)
Hypotheses
Ref Expression
negexpidd.1 (𝜑𝐴 ∈ ℝ)
negexpidd.2 (𝜑𝑁 ∈ ℕ0)
negexpidd.3 (𝜑 → ¬ 2 ∥ 𝑁)
Assertion
Ref Expression
negexpidd (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = 0)

Proof of Theorem negexpidd
StepHypRef Expression
1 negexpidd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 negexpidd.2 . . . . 5 (𝜑𝑁 ∈ ℕ0)
31, 2reexpcld 13931 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℝ)
43recnd 11053 . . 3 (𝜑 → (𝐴𝑁) ∈ ℂ)
54negidd 11372 . 2 (𝜑 → ((𝐴𝑁) + -(𝐴𝑁)) = 0)
61recnd 11053 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
76mulm1d 11477 . . . . . . 7 (𝜑 → (-1 · 𝐴) = -𝐴)
87eqcomd 2742 . . . . . 6 (𝜑 → -𝐴 = (-1 · 𝐴))
98oveq1d 7322 . . . . 5 (𝜑 → (-𝐴𝑁) = ((-1 · 𝐴)↑𝑁))
10 nn0z 12393 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1110a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ ℤ))
12 negexpidd.3 . . . . . . . . . . 11 (𝜑 → ¬ 2 ∥ 𝑁)
1311, 12jctird 528 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)))
142, 13mpd 15 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
15 m1expo 16133 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
1615a1i 11 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1))
1714, 16mpd 15 . . . . . . . 8 (𝜑 → (-1↑𝑁) = -1)
1817oveq1d 7322 . . . . . . 7 (𝜑 → ((-1↑𝑁) · (𝐴𝑁)) = (-1 · (𝐴𝑁)))
194mulm1d 11477 . . . . . . 7 (𝜑 → (-1 · (𝐴𝑁)) = -(𝐴𝑁))
2018, 19eqtr2d 2777 . . . . . 6 (𝜑 → -(𝐴𝑁) = ((-1↑𝑁) · (𝐴𝑁)))
21 neg1cn 12137 . . . . . . . 8 -1 ∈ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
2322, 6, 2mulexpd 13929 . . . . . 6 (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴𝑁)))
2420, 23eqtr4d 2779 . . . . 5 (𝜑 → -(𝐴𝑁) = ((-1 · 𝐴)↑𝑁))
259, 24eqtr4d 2779 . . . 4 (𝜑 → (-𝐴𝑁) = -(𝐴𝑁))
2625oveq2d 7323 . . 3 (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = ((𝐴𝑁) + -(𝐴𝑁)))
2726eqeq1d 2738 . 2 (𝜑 → (((𝐴𝑁) + (-𝐴𝑁)) = 0 ↔ ((𝐴𝑁) + -(𝐴𝑁)) = 0))
285, 27mpbird 257 1 (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  (class class class)co 7307  cc 10919  cr 10920  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  -cneg 11256  2c2 12078  0cn0 12283  cz 12369  cexp 13832  cdvds 16012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-n0 12284  df-z 12370  df-uz 12633  df-seq 13772  df-exp 13833  df-dvds 16013
This theorem is referenced by:  3cubeslem3r  40704
  Copyright terms: Public domain W3C validator