| Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > negexpidd | Structured version Visualization version GIF version | ||
| Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| Ref | Expression |
|---|---|
| negexpidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| negexpidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| negexpidd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| negexpidd | ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negexpidd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | negexpidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | reexpcld 14128 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
| 4 | 3 | recnd 11202 | . . 3 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 5 | 4 | negidd 11523 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0) |
| 6 | 1 | recnd 11202 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 7 | 6 | mulm1d 11630 | . . . . . . 7 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
| 8 | 7 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → -𝐴 = (-1 · 𝐴)) |
| 9 | 8 | oveq1d 7402 | . . . . 5 ⊢ (𝜑 → (-𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
| 10 | nn0z 12554 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ)) |
| 12 | negexpidd.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ 2 ∥ 𝑁) | |
| 13 | 11, 12 | jctird 526 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))) |
| 14 | 2, 13 | mpd 15 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) |
| 15 | m1expo 16345 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | |
| 16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)) |
| 17 | 14, 16 | mpd 15 | . . . . . . . 8 ⊢ (𝜑 → (-1↑𝑁) = -1) |
| 18 | 17 | oveq1d 7402 | . . . . . . 7 ⊢ (𝜑 → ((-1↑𝑁) · (𝐴↑𝑁)) = (-1 · (𝐴↑𝑁))) |
| 19 | 4 | mulm1d 11630 | . . . . . . 7 ⊢ (𝜑 → (-1 · (𝐴↑𝑁)) = -(𝐴↑𝑁)) |
| 20 | 18, 19 | eqtr2d 2765 | . . . . . 6 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
| 21 | neg1cn 12171 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → -1 ∈ ℂ) |
| 23 | 22, 6, 2 | mulexpd 14126 | . . . . . 6 ⊢ (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
| 24 | 20, 23 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
| 25 | 9, 24 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
| 26 | 25 | oveq2d 7403 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = ((𝐴↑𝑁) + -(𝐴↑𝑁))) |
| 27 | 26 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0 ↔ ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0)) |
| 28 | 5, 27 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 -cneg 11406 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ↑cexp 14026 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 df-dvds 16223 |
| This theorem is referenced by: 3cubeslem3r 42675 |
| Copyright terms: Public domain | W3C validator |