Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negexpidd Structured version   Visualization version   GIF version

Theorem negexpidd 42799
Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.)
Hypotheses
Ref Expression
negexpidd.1 (𝜑𝐴 ∈ ℝ)
negexpidd.2 (𝜑𝑁 ∈ ℕ0)
negexpidd.3 (𝜑 → ¬ 2 ∥ 𝑁)
Assertion
Ref Expression
negexpidd (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = 0)

Proof of Theorem negexpidd
StepHypRef Expression
1 negexpidd.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
2 negexpidd.2 . . . . 5 (𝜑𝑁 ∈ ℕ0)
31, 2reexpcld 14072 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℝ)
43recnd 11147 . . 3 (𝜑 → (𝐴𝑁) ∈ ℂ)
54negidd 11469 . 2 (𝜑 → ((𝐴𝑁) + -(𝐴𝑁)) = 0)
61recnd 11147 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
76mulm1d 11576 . . . . . . 7 (𝜑 → (-1 · 𝐴) = -𝐴)
87eqcomd 2739 . . . . . 6 (𝜑 → -𝐴 = (-1 · 𝐴))
98oveq1d 7367 . . . . 5 (𝜑 → (-𝐴𝑁) = ((-1 · 𝐴)↑𝑁))
10 nn0z 12499 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1110a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ ℤ))
12 negexpidd.3 . . . . . . . . . . 11 (𝜑 → ¬ 2 ∥ 𝑁)
1311, 12jctird 526 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)))
142, 13mpd 15 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
15 m1expo 16288 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
1615a1i 11 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1))
1714, 16mpd 15 . . . . . . . 8 (𝜑 → (-1↑𝑁) = -1)
1817oveq1d 7367 . . . . . . 7 (𝜑 → ((-1↑𝑁) · (𝐴𝑁)) = (-1 · (𝐴𝑁)))
194mulm1d 11576 . . . . . . 7 (𝜑 → (-1 · (𝐴𝑁)) = -(𝐴𝑁))
2018, 19eqtr2d 2769 . . . . . 6 (𝜑 → -(𝐴𝑁) = ((-1↑𝑁) · (𝐴𝑁)))
21 neg1cn 12117 . . . . . . . 8 -1 ∈ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
2322, 6, 2mulexpd 14070 . . . . . 6 (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴𝑁)))
2420, 23eqtr4d 2771 . . . . 5 (𝜑 → -(𝐴𝑁) = ((-1 · 𝐴)↑𝑁))
259, 24eqtr4d 2771 . . . 4 (𝜑 → (-𝐴𝑁) = -(𝐴𝑁))
2625oveq2d 7368 . . 3 (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = ((𝐴𝑁) + -(𝐴𝑁)))
2726eqeq1d 2735 . 2 (𝜑 → (((𝐴𝑁) + (-𝐴𝑁)) = 0 ↔ ((𝐴𝑁) + -(𝐴𝑁)) = 0))
285, 27mpbird 257 1 (𝜑 → ((𝐴𝑁) + (-𝐴𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  -cneg 11352  2c2 12187  0cn0 12388  cz 12475  cexp 13970  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-exp 13971  df-dvds 16166
This theorem is referenced by:  3cubeslem3r  42804
  Copyright terms: Public domain W3C validator