Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > negexpidd | Structured version Visualization version GIF version |
Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
Ref | Expression |
---|---|
negexpidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
negexpidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
negexpidd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
Ref | Expression |
---|---|
negexpidd | ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negexpidd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | negexpidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | reexpcld 13862 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
4 | 3 | recnd 10987 | . . 3 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
5 | 4 | negidd 11305 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0) |
6 | 1 | recnd 10987 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | mulm1d 11410 | . . . . . . 7 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
8 | 7 | eqcomd 2745 | . . . . . 6 ⊢ (𝜑 → -𝐴 = (-1 · 𝐴)) |
9 | 8 | oveq1d 7283 | . . . . 5 ⊢ (𝜑 → (-𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
10 | nn0z 12326 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ)) |
12 | negexpidd.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ 2 ∥ 𝑁) | |
13 | 11, 12 | jctird 526 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))) |
14 | 2, 13 | mpd 15 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) |
15 | m1expo 16065 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)) |
17 | 14, 16 | mpd 15 | . . . . . . . 8 ⊢ (𝜑 → (-1↑𝑁) = -1) |
18 | 17 | oveq1d 7283 | . . . . . . 7 ⊢ (𝜑 → ((-1↑𝑁) · (𝐴↑𝑁)) = (-1 · (𝐴↑𝑁))) |
19 | 4 | mulm1d 11410 | . . . . . . 7 ⊢ (𝜑 → (-1 · (𝐴↑𝑁)) = -(𝐴↑𝑁)) |
20 | 18, 19 | eqtr2d 2780 | . . . . . 6 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
21 | neg1cn 12070 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → -1 ∈ ℂ) |
23 | 22, 6, 2 | mulexpd 13860 | . . . . . 6 ⊢ (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
24 | 20, 23 | eqtr4d 2782 | . . . . 5 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
25 | 9, 24 | eqtr4d 2782 | . . . 4 ⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
26 | 25 | oveq2d 7284 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = ((𝐴↑𝑁) + -(𝐴↑𝑁))) |
27 | 26 | eqeq1d 2741 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0 ↔ ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0)) |
28 | 5, 27 | mpbird 256 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 -cneg 11189 2c2 12011 ℕ0cn0 12216 ℤcz 12302 ↑cexp 13763 ∥ cdvds 15944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 df-dvds 15945 |
This theorem is referenced by: 3cubeslem3r 40489 |
Copyright terms: Public domain | W3C validator |