![]() |
Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negexpidd | Structured version Visualization version GIF version |
Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
Ref | Expression |
---|---|
negexpidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
negexpidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
negexpidd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
Ref | Expression |
---|---|
negexpidd | ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negexpidd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | negexpidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | reexpcld 14135 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
4 | 3 | recnd 11249 | . . 3 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
5 | 4 | negidd 11568 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0) |
6 | 1 | recnd 11249 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | mulm1d 11673 | . . . . . . 7 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
8 | 7 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → -𝐴 = (-1 · 𝐴)) |
9 | 8 | oveq1d 7427 | . . . . 5 ⊢ (𝜑 → (-𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
10 | nn0z 12590 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ)) |
12 | negexpidd.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ 2 ∥ 𝑁) | |
13 | 11, 12 | jctird 526 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))) |
14 | 2, 13 | mpd 15 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) |
15 | m1expo 16325 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)) |
17 | 14, 16 | mpd 15 | . . . . . . . 8 ⊢ (𝜑 → (-1↑𝑁) = -1) |
18 | 17 | oveq1d 7427 | . . . . . . 7 ⊢ (𝜑 → ((-1↑𝑁) · (𝐴↑𝑁)) = (-1 · (𝐴↑𝑁))) |
19 | 4 | mulm1d 11673 | . . . . . . 7 ⊢ (𝜑 → (-1 · (𝐴↑𝑁)) = -(𝐴↑𝑁)) |
20 | 18, 19 | eqtr2d 2772 | . . . . . 6 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
21 | neg1cn 12333 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → -1 ∈ ℂ) |
23 | 22, 6, 2 | mulexpd 14133 | . . . . . 6 ⊢ (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
24 | 20, 23 | eqtr4d 2774 | . . . . 5 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
25 | 9, 24 | eqtr4d 2774 | . . . 4 ⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
26 | 25 | oveq2d 7428 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = ((𝐴↑𝑁) + -(𝐴↑𝑁))) |
27 | 26 | eqeq1d 2733 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0 ↔ ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0)) |
28 | 5, 27 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℂcc 11114 ℝcr 11115 0cc0 11116 1c1 11117 + caddc 11119 · cmul 11121 -cneg 11452 2c2 12274 ℕ0cn0 12479 ℤcz 12565 ↑cexp 14034 ∥ cdvds 16204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-seq 13974 df-exp 14035 df-dvds 16205 |
This theorem is referenced by: 3cubeslem3r 41890 |
Copyright terms: Public domain | W3C validator |