| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexnal | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexnal | ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfral2 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| Copyright terms: Public domain | W3C validator |