MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdim01 Structured version   Visualization version   GIF version

Theorem tgdim01 27491
Description: In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tgdim01.p 𝑃 = (Baseβ€˜πΊ)
tgdim01.i 𝐼 = (Itvβ€˜πΊ)
tgdim01.g (πœ‘ β†’ 𝐺 ∈ 𝑉)
tgdim01.1 (πœ‘ β†’ Β¬ 𝐺DimTarskiGβ‰₯2)
tgdim01.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
tgdim01.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
tgdim01.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
Assertion
Ref Expression
tgdim01 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))

Proof of Theorem tgdim01
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgdim01.x . 2 (πœ‘ β†’ 𝑋 ∈ 𝑃)
2 tgdim01.y . 2 (πœ‘ β†’ π‘Œ ∈ 𝑃)
3 tgdim01.z . 2 (πœ‘ β†’ 𝑍 ∈ 𝑃)
4 tgdim01.1 . . . 4 (πœ‘ β†’ Β¬ 𝐺DimTarskiGβ‰₯2)
5 tgdim01.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ 𝑉)
6 tgdim01.p . . . . . 6 𝑃 = (Baseβ€˜πΊ)
7 eqid 2733 . . . . . 6 (distβ€˜πΊ) = (distβ€˜πΊ)
8 tgdim01.i . . . . . 6 𝐼 = (Itvβ€˜πΊ)
96, 7, 8istrkg2ld 27444 . . . . 5 (𝐺 ∈ 𝑉 β†’ (𝐺DimTarskiGβ‰₯2 ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))
105, 9syl 17 . . . 4 (πœ‘ β†’ (𝐺DimTarskiGβ‰₯2 ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))
114, 10mtbid 324 . . 3 (πœ‘ β†’ Β¬ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
12 rexnal3 3130 . . . 4 (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ Β¬ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
1312con2bii 358 . . 3 (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ Β¬ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
1411, 13sylibr 233 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))
15 oveq1 7365 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯𝐼𝑦) = (𝑋𝐼𝑦))
1615eleq2d 2820 . . . . 5 (π‘₯ = 𝑋 β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦)))
17 eleq1 2822 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦)))
18 oveq1 7365 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯𝐼𝑧) = (𝑋𝐼𝑧))
1918eleq2d 2820 . . . . 5 (π‘₯ = 𝑋 β†’ (𝑦 ∈ (π‘₯𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧)))
2016, 17, 193orbi123d 1436 . . . 4 (π‘₯ = 𝑋 β†’ ((𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧))))
21 oveq2 7366 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑋𝐼𝑦) = (π‘‹πΌπ‘Œ))
2221eleq2d 2820 . . . . 5 (𝑦 = π‘Œ β†’ (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (π‘‹πΌπ‘Œ)))
23 oveq2 7366 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑧𝐼𝑦) = (π‘§πΌπ‘Œ))
2423eleq2d 2820 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (π‘§πΌπ‘Œ)))
25 eleq1 2822 . . . . 5 (𝑦 = π‘Œ β†’ (𝑦 ∈ (𝑋𝐼𝑧) ↔ π‘Œ ∈ (𝑋𝐼𝑧)))
2622, 24, 253orbi123d 1436 . . . 4 (𝑦 = π‘Œ β†’ ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))))
27 eleq1 2822 . . . . 5 (𝑧 = 𝑍 β†’ (𝑧 ∈ (π‘‹πΌπ‘Œ) ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
28 oveq1 7365 . . . . . 6 (𝑧 = 𝑍 β†’ (π‘§πΌπ‘Œ) = (π‘πΌπ‘Œ))
2928eleq2d 2820 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ∈ (π‘§πΌπ‘Œ) ↔ 𝑋 ∈ (π‘πΌπ‘Œ)))
30 oveq2 7366 . . . . . 6 (𝑧 = 𝑍 β†’ (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
3130eleq2d 2820 . . . . 5 (𝑧 = 𝑍 β†’ (π‘Œ ∈ (𝑋𝐼𝑧) ↔ π‘Œ ∈ (𝑋𝐼𝑍)))
3227, 29, 313orbi123d 1436 . . . 4 (𝑧 = 𝑍 β†’ ((𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
3320, 26, 32rspc3v 3592 . . 3 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
3433imp 408 . 2 (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))
351, 2, 3, 14, 34syl31anc 1374 1 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∨ w3o 1087   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  2c2 12213  Basecbs 17088  distcds 17147  DimTarskiGβ‰₯cstrkgld 27415  Itvcitv 27417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-trkgld 27436
This theorem is referenced by:  tgdim01ln  27548
  Copyright terms: Public domain W3C validator