![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgdim01 | Structured version Visualization version GIF version |
Description: In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
Ref | Expression |
---|---|
tgdim01.p | ⊢ 𝑃 = (Base‘𝐺) |
tgdim01.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgdim01.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tgdim01.1 | ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) |
tgdim01.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tgdim01.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgdim01.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
tgdim01 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgdim01.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
2 | tgdim01.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
3 | tgdim01.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
4 | tgdim01.1 | . . . 4 ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) | |
5 | tgdim01.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tgdim01.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
7 | eqid 2740 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
8 | tgdim01.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
9 | 6, 7, 8 | istrkg2ld 28486 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
11 | 4, 10 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
12 | rexnal3 3142 | . . . 4 ⊢ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | |
13 | 12 | con2bii 357 | . . 3 ⊢ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
14 | 11, 13 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
15 | oveq1 7455 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦)) | |
16 | 15 | eleq2d 2830 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦))) |
17 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦))) | |
18 | oveq1 7455 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧)) | |
19 | 18 | eleq2d 2830 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧))) |
20 | 16, 17, 19 | 3orbi123d 1435 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))) |
21 | oveq2 7456 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌)) | |
22 | 21 | eleq2d 2830 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌))) |
23 | oveq2 7456 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌)) | |
24 | 23 | eleq2d 2830 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌))) |
25 | eleq1 2832 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧))) | |
26 | 22, 24, 25 | 3orbi123d 1435 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))) |
27 | eleq1 2832 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | |
28 | oveq1 7455 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) | |
29 | 28 | eleq2d 2830 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
30 | oveq2 7456 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) | |
31 | 30 | eleq2d 2830 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
32 | 27, 29, 31 | 3orbi123d 1435 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
33 | 20, 26, 32 | rspc3v 3651 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
34 | 33 | imp 406 | . 2 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
35 | 1, 2, 3, 14, 34 | syl31anc 1373 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ w3o 1086 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 2c2 12348 Basecbs 17258 distcds 17320 DimTarskiG≥cstrkgld 28457 Itvcitv 28459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-trkgld 28478 |
This theorem is referenced by: tgdim01ln 28590 |
Copyright terms: Public domain | W3C validator |