Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgdim01 | Structured version Visualization version GIF version |
Description: In geometries of dimension less than 2, all points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
Ref | Expression |
---|---|
tgdim01.p | ⊢ 𝑃 = (Base‘𝐺) |
tgdim01.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgdim01.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tgdim01.1 | ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) |
tgdim01.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tgdim01.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgdim01.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
tgdim01 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgdim01.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
2 | tgdim01.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
3 | tgdim01.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
4 | tgdim01.1 | . . . 4 ⊢ (𝜑 → ¬ 𝐺DimTarskiG≥2) | |
5 | tgdim01.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tgdim01.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
7 | eqid 2738 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
8 | tgdim01.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
9 | 6, 7, 8 | istrkg2ld 26725 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
11 | 4, 10 | mtbid 323 | . . 3 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
12 | rexnal3 3187 | . . . 4 ⊢ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | |
13 | 12 | con2bii 357 | . . 3 ⊢ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
14 | 11, 13 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) |
15 | oveq1 7262 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑦) = (𝑋𝐼𝑦)) | |
16 | 15 | eleq2d 2824 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑦))) |
17 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑦))) | |
18 | oveq1 7262 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐼𝑧) = (𝑋𝐼𝑧)) | |
19 | 18 | eleq2d 2824 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑋𝐼𝑧))) |
20 | 16, 17, 19 | 3orbi123d 1433 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)))) |
21 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋𝐼𝑦) = (𝑋𝐼𝑌)) | |
22 | 21 | eleq2d 2824 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧 ∈ (𝑋𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌))) |
23 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑧𝐼𝑦) = (𝑧𝐼𝑌)) | |
24 | 23 | eleq2d 2824 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌))) |
25 | eleq1 2826 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧))) | |
26 | 22, 24, 25 | 3orbi123d 1433 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑧 ∈ (𝑋𝐼𝑦) ∨ 𝑋 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑋𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)))) |
27 | eleq1 2826 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | |
28 | oveq1 7262 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) | |
29 | 28 | eleq2d 2824 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
30 | oveq2 7263 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) | |
31 | 30 | eleq2d 2824 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
32 | 27, 29, 31 | 3orbi123d 1433 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
33 | 20, 26, 32 | rspc3v 3565 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
34 | 33 | imp 406 | . 2 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
35 | 1, 2, 3, 14, 34 | syl31anc 1371 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ w3o 1084 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 2c2 11958 Basecbs 16840 distcds 16897 DimTarskiG≥cstrkgld 26697 Itvcitv 26699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-trkgld 26717 |
This theorem is referenced by: tgdim01ln 26829 |
Copyright terms: Public domain | W3C validator |