Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoanid Structured version   Visualization version   GIF version

Theorem rmoanid 3327
 Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018.)
Assertion
Ref Expression
rmoanid (∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoanid
StepHypRef Expression
1 anabs5 661 . . 3 ((𝑥𝐴 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴𝜑))
21mobii 2625 . 2 (∃*𝑥(𝑥𝐴 ∧ (𝑥𝐴𝜑)) ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rmo 3144 . 2 (∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝑥𝐴𝜑)))
4 df-rmo 3144 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
52, 3, 43bitr4i 305 1 (∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   ∈ wcel 2107  ∃*wmo 2614  ∃*wrmo 3139 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1774  df-mo 2616  df-rmo 3144 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator