MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoanid Structured version   Visualization version   GIF version

Theorem rmoanid 3398
Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018.) (Proof shortened by Wolf Lammen, 12-Jan-2025.)
Assertion
Ref Expression
rmoanid (∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoanid
StepHypRef Expression
1 ibar 528 . . 3 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
21bicomd 223 . 2 (𝑥𝐴 → ((𝑥𝐴𝜑) ↔ 𝜑))
32rmobiia 3394 1 (∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-rmo 3388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator