MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuanid Structured version   Visualization version   GIF version

Theorem reuanid 3399
Description: Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018.) (Proof shortened by Wolf Lammen, 12-Jan-2025.)
Assertion
Ref Expression
reuanid (∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥𝐴 𝜑)

Proof of Theorem reuanid
StepHypRef Expression
1 ibar 528 . . 3 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
21bicomd 223 . 2 (𝑥𝐴 → ((𝑥𝐴𝜑) ↔ 𝜑))
32reubiia 3395 1 (∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572  df-reu 3389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator