| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3352 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃!wreu 3343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3346 |
| This theorem is referenced by: 2reu5lem1 3717 reusv2lem5 5344 reusv2 5345 oaf1o 8488 aceq2 10032 lubfval 18273 lubeldm 18276 glbfval 18286 glbeldm 18289 odulub 18330 oduglb 18332 2sqreu 27384 2sqreunn 27385 2sqreult 27386 2sqreultb 27387 2sqreunnlt 27388 2sqreunnltb 27389 uspgredgiedg 29139 uspgriedgedg 29140 usgredg2vlem1 29189 usgredg2vlem2 29190 frcond1 30229 frcond2 30230 n4cyclfrgr 30254 cnlnadjlem3 32032 disjrdx 32554 ply1divalg3 35634 lshpsmreu 39107 reuf1odnf 47111 reuf1od 47112 2reu7 47115 2reu8 47116 2reu8i 47117 2reuimp0 47118 isuspgrim0 47898 isuspgrimlem 47899 uptr2 49226 |
| Copyright terms: Public domain | W3C validator |