| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3363 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃!wreu 3354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 df-reu 3357 |
| This theorem is referenced by: 2reu5lem1 3729 reusv2lem5 5360 reusv2 5361 oaf1o 8530 aceq2 10079 lubfval 18316 lubeldm 18319 glbfval 18329 glbeldm 18332 odulub 18373 oduglb 18375 2sqreu 27374 2sqreunn 27375 2sqreult 27376 2sqreultb 27377 2sqreunnlt 27378 2sqreunnltb 27379 uspgredgiedg 29109 uspgriedgedg 29110 usgredg2vlem1 29159 usgredg2vlem2 29160 frcond1 30202 frcond2 30203 n4cyclfrgr 30227 cnlnadjlem3 32005 disjrdx 32527 ply1divalg3 35636 lshpsmreu 39109 reuf1odnf 47112 reuf1od 47113 2reu7 47116 2reu8 47117 2reu8i 47118 2reuimp0 47119 isuspgrim0 47898 isuspgrimlem 47899 uptr2 49214 |
| Copyright terms: Public domain | W3C validator |