| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3361 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃!wreu 3352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3355 |
| This theorem is referenced by: 2reu5lem1 3726 reusv2lem5 5357 reusv2 5358 oaf1o 8527 aceq2 10072 lubfval 18309 lubeldm 18312 glbfval 18322 glbeldm 18325 odulub 18366 oduglb 18368 2sqreu 27367 2sqreunn 27368 2sqreult 27369 2sqreultb 27370 2sqreunnlt 27371 2sqreunnltb 27372 uspgredgiedg 29102 uspgriedgedg 29103 usgredg2vlem1 29152 usgredg2vlem2 29153 frcond1 30195 frcond2 30196 n4cyclfrgr 30220 cnlnadjlem3 31998 disjrdx 32520 ply1divalg3 35629 lshpsmreu 39102 reuf1odnf 47108 reuf1od 47109 2reu7 47112 2reu8 47113 2reu8i 47114 2reuimp0 47115 isuspgrim0 47894 isuspgrimlem 47895 uptr2 49210 |
| Copyright terms: Public domain | W3C validator |