| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3366 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∃!wreu 3357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 df-reu 3360 |
| This theorem is referenced by: 2reu5lem1 3738 reusv2lem5 5372 reusv2 5373 oaf1o 8575 aceq2 10133 lubfval 18360 lubeldm 18363 glbfval 18373 glbeldm 18376 odulub 18417 oduglb 18419 2sqreu 27419 2sqreunn 27420 2sqreult 27421 2sqreultb 27422 2sqreunnlt 27423 2sqreunnltb 27424 uspgredgiedg 29154 uspgriedgedg 29155 usgredg2vlem1 29204 usgredg2vlem2 29205 frcond1 30247 frcond2 30248 n4cyclfrgr 30272 cnlnadjlem3 32050 disjrdx 32572 ply1divalg3 35664 lshpsmreu 39127 reuf1odnf 47136 reuf1od 47137 2reu7 47140 2reu8 47141 2reu8i 47142 2reuimp0 47143 isuspgrim0 47907 isuspgrimlem 47908 |
| Copyright terms: Public domain | W3C validator |