![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3381 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∃!wreu 3372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-mo 2529 df-eu 2558 df-reu 3375 |
This theorem is referenced by: 2reu5lem1 3752 reusv2lem5 5406 reusv2 5407 oaf1o 8590 aceq2 10150 lubfval 18349 lubeldm 18352 glbfval 18362 glbeldm 18365 odulub 18406 oduglb 18408 2sqreu 27409 2sqreunn 27410 2sqreult 27411 2sqreultb 27412 2sqreunnlt 27413 2sqreunnltb 27414 uspgredgiedg 29008 uspgriedgedg 29009 usgredg2vlem1 29058 usgredg2vlem2 29059 frcond1 30096 frcond2 30097 n4cyclfrgr 30121 cnlnadjlem3 31899 disjrdx 32402 lshpsmreu 38613 reuf1odnf 46516 reuf1od 46517 2reu7 46520 2reu8 46521 2reu8i 46522 2reuimp0 46523 isuspgrim0 47248 isuspgrimlem 47250 |
Copyright terms: Public domain | W3C validator |