| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3358 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃!wreu 3349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3352 |
| This theorem is referenced by: 2reu5lem1 3723 reusv2lem5 5352 reusv2 5353 oaf1o 8504 aceq2 10048 lubfval 18285 lubeldm 18288 glbfval 18298 glbeldm 18301 odulub 18342 oduglb 18344 2sqreu 27343 2sqreunn 27344 2sqreult 27345 2sqreultb 27346 2sqreunnlt 27347 2sqreunnltb 27348 uspgredgiedg 29078 uspgriedgedg 29079 usgredg2vlem1 29128 usgredg2vlem2 29129 frcond1 30168 frcond2 30169 n4cyclfrgr 30193 cnlnadjlem3 31971 disjrdx 32493 ply1divalg3 35602 lshpsmreu 39075 reuf1odnf 47081 reuf1od 47082 2reu7 47085 2reu8 47086 2reu8i 47087 2reuimp0 47088 isuspgrim0 47867 isuspgrimlem 47868 uptr2 49183 |
| Copyright terms: Public domain | W3C validator |