MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubii Structured version   Visualization version   GIF version

Theorem reubii 3383
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
Hypothesis
Ref Expression
rmobii.1 (𝜑𝜓)
Assertion
Ref Expression
reubii (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)

Proof of Theorem reubii
StepHypRef Expression
1 rmobii.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32reubiia 3381 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  ∃!wreu 3372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-mo 2529  df-eu 2558  df-reu 3375
This theorem is referenced by:  2reu5lem1  3752  reusv2lem5  5406  reusv2  5407  oaf1o  8590  aceq2  10150  lubfval  18349  lubeldm  18352  glbfval  18362  glbeldm  18365  odulub  18406  oduglb  18408  2sqreu  27409  2sqreunn  27410  2sqreult  27411  2sqreultb  27412  2sqreunnlt  27413  2sqreunnltb  27414  uspgredgiedg  29008  uspgriedgedg  29009  usgredg2vlem1  29058  usgredg2vlem2  29059  frcond1  30096  frcond2  30097  n4cyclfrgr  30121  cnlnadjlem3  31899  disjrdx  32402  lshpsmreu  38613  reuf1odnf  46516  reuf1od  46517  2reu7  46520  2reu8  46521  2reu8i  46522  2reuimp0  46523  isuspgrim0  47248  isuspgrimlem  47250
  Copyright terms: Public domain W3C validator