| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3354 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∃!wreu 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-eu 2566 df-reu 3348 |
| This theorem is referenced by: 2reu5lem1 3710 reusv2lem5 5344 reusv2 5345 oaf1o 8487 aceq2 10021 lubfval 18262 lubeldm 18265 glbfval 18275 glbeldm 18278 odulub 18319 oduglb 18321 2sqreu 27414 2sqreunn 27415 2sqreult 27416 2sqreultb 27417 2sqreunnlt 27418 2sqreunnltb 27419 uspgredgiedg 29174 uspgriedgedg 29175 usgredg2vlem1 29224 usgredg2vlem2 29225 frcond1 30267 frcond2 30268 n4cyclfrgr 30292 cnlnadjlem3 32070 disjrdx 32592 ply1divalg3 35758 lshpsmreu 39281 reuf1odnf 47269 reuf1od 47270 2reu7 47273 2reu8 47274 2reu8i 47275 2reuimp0 47276 isuspgrim0 48056 isuspgrimlem 48057 uptr2 49382 |
| Copyright terms: Public domain | W3C validator |