![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3384 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 ∃!wreu 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-mo 2537 df-eu 2566 df-reu 3378 |
This theorem is referenced by: 2reu5lem1 3763 reusv2lem5 5407 reusv2 5408 oaf1o 8599 aceq2 10156 lubfval 18407 lubeldm 18410 glbfval 18420 glbeldm 18423 odulub 18464 oduglb 18466 2sqreu 27514 2sqreunn 27515 2sqreult 27516 2sqreultb 27517 2sqreunnlt 27518 2sqreunnltb 27519 uspgredgiedg 29206 uspgriedgedg 29207 usgredg2vlem1 29256 usgredg2vlem2 29257 frcond1 30294 frcond2 30295 n4cyclfrgr 30319 cnlnadjlem3 32097 disjrdx 32610 ply1divalg3 35626 lshpsmreu 39090 reuf1odnf 47056 reuf1od 47057 2reu7 47060 2reu8 47061 2reu8i 47062 2reuimp0 47063 isuspgrim0 47809 isuspgrimlem 47811 |
Copyright terms: Public domain | W3C validator |