| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
| Ref | Expression |
|---|---|
| rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | reubiia 3353 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∃!wreu 3344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 df-reu 3347 |
| This theorem is referenced by: 2reu5lem1 3709 reusv2lem5 5335 reusv2 5336 oaf1o 8473 aceq2 10005 lubfval 18249 lubeldm 18252 glbfval 18262 glbeldm 18265 odulub 18306 oduglb 18308 2sqreu 27389 2sqreunn 27390 2sqreult 27391 2sqreultb 27392 2sqreunnlt 27393 2sqreunnltb 27394 uspgredgiedg 29148 uspgriedgedg 29149 usgredg2vlem1 29198 usgredg2vlem2 29199 frcond1 30238 frcond2 30239 n4cyclfrgr 30263 cnlnadjlem3 32041 disjrdx 32563 ply1divalg3 35678 lshpsmreu 39148 reuf1odnf 47138 reuf1od 47139 2reu7 47142 2reu8 47143 2reu8i 47144 2reuimp0 47145 isuspgrim0 47925 isuspgrimlem 47926 uptr2 49253 |
| Copyright terms: Public domain | W3C validator |