![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3395 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-reu 3389 |
This theorem is referenced by: 2reu5lem1 3777 reusv2lem5 5420 reusv2 5421 oaf1o 8619 aceq2 10188 lubfval 18420 lubeldm 18423 glbfval 18433 glbeldm 18436 odulub 18477 oduglb 18479 2sqreu 27518 2sqreunn 27519 2sqreult 27520 2sqreultb 27521 2sqreunnlt 27522 2sqreunnltb 27523 uspgredgiedg 29210 uspgriedgedg 29211 usgredg2vlem1 29260 usgredg2vlem2 29261 frcond1 30298 frcond2 30299 n4cyclfrgr 30323 cnlnadjlem3 32101 disjrdx 32613 ply1divalg3 35610 lshpsmreu 39065 reuf1odnf 47022 reuf1od 47023 2reu7 47026 2reu8 47027 2reu8i 47028 2reuimp0 47029 isuspgrim0 47756 isuspgrimlem 47758 |
Copyright terms: Public domain | W3C validator |