Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3322 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 ∃!wreu 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-mo 2541 df-eu 2570 df-reu 3072 |
This theorem is referenced by: 2reu5lem1 3693 reusv2lem5 5328 reusv2 5329 oaf1o 8370 aceq2 9859 lubfval 18049 lubeldm 18052 glbfval 18062 glbeldm 18065 odulub 18106 oduglb 18108 2sqreu 26585 2sqreunn 26586 2sqreult 26587 2sqreultb 26588 2sqreunnlt 26589 2sqreunnltb 26590 usgredg2vlem1 27573 usgredg2vlem2 27574 frcond1 28609 frcond2 28610 n4cyclfrgr 28634 cnlnadjlem3 30410 disjrdx 30909 lshpsmreu 37102 reuf1odnf 44550 reuf1od 44551 2reu7 44554 2reu8 44555 2reu8i 44556 2reuimp0 44557 |
Copyright terms: Public domain | W3C validator |