Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
Ref | Expression |
---|---|
reubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
reubii | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | reubiia 3336 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2104 ∃!wreu 3282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-mo 2538 df-eu 2567 df-reu 3286 |
This theorem is referenced by: 2reu5lem1 3695 reusv2lem5 5334 reusv2 5335 oaf1o 8425 aceq2 9921 lubfval 18113 lubeldm 18116 glbfval 18126 glbeldm 18129 odulub 18170 oduglb 18172 2sqreu 26649 2sqreunn 26650 2sqreult 26651 2sqreultb 26652 2sqreunnlt 26653 2sqreunnltb 26654 usgredg2vlem1 27637 usgredg2vlem2 27638 frcond1 28675 frcond2 28676 n4cyclfrgr 28700 cnlnadjlem3 30476 disjrdx 30975 lshpsmreu 37165 reuf1odnf 44657 reuf1od 44658 2reu7 44661 2reu8 44662 2reu8i 44663 2reuimp0 44664 |
Copyright terms: Public domain | W3C validator |