MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1OLD Structured version   Visualization version   GIF version

Theorem rmoeq1OLD 3418
Description: Obsolete version of rmoeq1 3416 as of 12-Mar-2025. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2141, ax-11 2157, and ax-12 2177. (Revised by Steven Nguyen, 30-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rmoeq1OLD (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoeq1OLD
StepHypRef Expression
1 eleq2 2830 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 631 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32mobidv 2549 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
4 df-rmo 3380 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
5 df-rmo 3380 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  ∃*wrmo 3379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2540  df-cleq 2729  df-clel 2816  df-rmo 3380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator