| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reueq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2113. (Revised by Wolf Lammen, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| reueq1 | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3288 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 2 | rmoeq1 3377 | . . 3 ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑))) |
| 4 | reu5 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 5 | reu5 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 df-cleq 2723 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: reueqd 3382 reueqdv 3383 lubfval 18254 glbfval 18267 uspgredg2vlem 29201 uspgredg2v 29202 isfrgr 30240 frgr1v 30251 nfrgr2v 30252 frgr3v 30255 1vwmgr 30256 3vfriswmgr 30258 isplig 30456 hdmap14lem4a 41980 hdmap14lem15 41991 |
| Copyright terms: Public domain | W3C validator |