| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reueq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2141, ax-11 2157, and ax-12 2177. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2110. (Revised by Wolf Lammen, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| reueq1 | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3322 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 2 | rmoeq1 3416 | . . 3 ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑))) |
| 4 | reu5 3382 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 5 | reu5 3382 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wrex 3070 ∃!wreu 3378 ∃*wrmo 3379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-cleq 2729 df-rex 3071 df-rmo 3380 df-reu 3381 |
| This theorem is referenced by: reueqd 3421 reueqdv 3422 lubfval 18395 glbfval 18408 uspgredg2vlem 29240 uspgredg2v 29241 isfrgr 30279 frgr1v 30290 nfrgr2v 30291 frgr3v 30294 1vwmgr 30295 3vfriswmgr 30297 isplig 30495 hdmap14lem4a 41873 hdmap14lem15 41884 |
| Copyright terms: Public domain | W3C validator |