MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3415
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2108. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 rexeq 3321 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 rmoeq1 3414 . . 3 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑)))
4 reu5 3378 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
5 reu5 3378 . 2 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wrex 3070  ∃!wreu 3374  ∃*wrmo 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-mo 2534  df-eu 2563  df-cleq 2724  df-rex 3071  df-rmo 3376  df-reu 3377
This theorem is referenced by:  reueqd  3419  lubfval  18307  glbfval  18320  uspgredg2vlem  28735  uspgredg2v  28736  isfrgr  29768  frgr1v  29779  nfrgr2v  29780  frgr3v  29783  1vwmgr  29784  3vfriswmgr  29786  isplig  29984  hdmap14lem4a  41045  hdmap14lem15  41056
  Copyright terms: Public domain W3C validator