![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reueq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2111, ax-11 2125, and ax-12 2140. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
reueq1 | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2870 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | eubidv 2631 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
4 | df-reu 3111 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-reu 3111 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3bitr4g 315 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ∃!weu 2610 ∃!wreu 3106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1763 df-mo 2575 df-eu 2611 df-cleq 2787 df-clel 2862 df-reu 3111 |
This theorem is referenced by: reueqd 3378 lubfval 17417 glbfval 17430 uspgredg2vlem 26688 uspgredg2v 26689 isfrgr 27721 frgr1v 27734 nfrgr2v 27735 frgr3v 27738 1vwmgr 27739 3vfriswmgr 27741 isplig 27936 hdmap14lem4a 38551 hdmap14lem15 38562 |
Copyright terms: Public domain | W3C validator |