MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3342
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2140, ax-11 2157, and ax-12 2174. (Revised by Steven Nguyen, 30-Apr-2023.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 eleq2 2828 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 629 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32eubidv 2587 . 2 (𝐴 = 𝐵 → (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑥(𝑥𝐵𝜑)))
4 df-reu 3072 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
5 df-reu 3072 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  ∃!weu 2569  ∃!wreu 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-mo 2541  df-eu 2570  df-cleq 2731  df-clel 2817  df-reu 3072
This theorem is referenced by:  reueqd  3348  lubfval  18049  glbfval  18062  uspgredg2vlem  27571  uspgredg2v  27572  isfrgr  28603  frgr1v  28614  nfrgr2v  28615  frgr3v  28618  1vwmgr  28619  3vfriswmgr  28621  isplig  28817  hdmap14lem4a  39864  hdmap14lem15  39875
  Copyright terms: Public domain W3C validator