Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reueq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2175. (Revised by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
reueq1 | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 633 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | eubidv 2585 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
4 | df-reu 3068 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-reu 3068 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃!weu 2567 ∃!wreu 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2539 df-eu 2568 df-cleq 2729 df-clel 2816 df-reu 3068 |
This theorem is referenced by: reueqd 3327 lubfval 17856 glbfval 17869 uspgredg2vlem 27311 uspgredg2v 27312 isfrgr 28343 frgr1v 28354 nfrgr2v 28355 frgr3v 28358 1vwmgr 28359 3vfriswmgr 28361 isplig 28557 hdmap14lem4a 39622 hdmap14lem15 39633 |
Copyright terms: Public domain | W3C validator |