MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3396
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2141, ax-11 2157, and ax-12 2177. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2110. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 rexeq 3301 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 rmoeq1 3395 . . 3 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑)))
4 reu5 3361 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
5 reu5 3361 . 2 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2539  df-eu 2568  df-cleq 2727  df-rex 3061  df-rmo 3359  df-reu 3360
This theorem is referenced by:  reueqd  3400  reueqdv  3401  lubfval  18360  glbfval  18373  uspgredg2vlem  29202  uspgredg2v  29203  isfrgr  30241  frgr1v  30252  nfrgr2v  30253  frgr3v  30256  1vwmgr  30257  3vfriswmgr  30259  isplig  30457  hdmap14lem4a  41890  hdmap14lem15  41901
  Copyright terms: Public domain W3C validator