![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reueq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2139, ax-11 2155, and ax-12 2175. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2108. (Revised by Wolf Lammen, 12-Mar-2025.) |
Ref | Expression |
---|---|
reueq1 | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3320 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
2 | rmoeq1 3414 | . . 3 ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝐴 = 𝐵 → ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑))) |
4 | reu5 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
5 | reu5 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-eu 2567 df-cleq 2727 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: reueqd 3419 reueqdv 3420 lubfval 18408 glbfval 18421 uspgredg2vlem 29255 uspgredg2v 29256 isfrgr 30289 frgr1v 30300 nfrgr2v 30301 frgr3v 30304 1vwmgr 30305 3vfriswmgr 30307 isplig 30505 hdmap14lem4a 41854 hdmap14lem15 41865 |
Copyright terms: Public domain | W3C validator |