MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3321
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2175. (Revised by Steven Nguyen, 30-Apr-2023.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 eleq2 2826 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 633 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32eubidv 2585 . 2 (𝐴 = 𝐵 → (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑥(𝑥𝐵𝜑)))
4 df-reu 3068 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
5 df-reu 3068 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
63, 4, 53bitr4g 317 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  ∃!weu 2567  ∃!wreu 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-mo 2539  df-eu 2568  df-cleq 2729  df-clel 2816  df-reu 3068
This theorem is referenced by:  reueqd  3327  lubfval  17856  glbfval  17869  uspgredg2vlem  27311  uspgredg2v  27312  isfrgr  28343  frgr1v  28354  nfrgr2v  28355  frgr3v  28358  1vwmgr  28359  3vfriswmgr  28361  isplig  28557  hdmap14lem4a  39622  hdmap14lem15  39633
  Copyright terms: Public domain W3C validator