MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3426
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2110. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 rexeq 3330 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 rmoeq1 3425 . . 3 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑)))
4 reu5 3390 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
5 reu5 3390 . 2 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572  df-cleq 2732  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  reueqd  3430  lubfval  18420  glbfval  18433  uspgredg2vlem  29258  uspgredg2v  29259  isfrgr  30292  frgr1v  30303  nfrgr2v  30304  frgr3v  30307  1vwmgr  30308  3vfriswmgr  30310  isplig  30508  reueqdv  36178  hdmap14lem4a  41828  hdmap14lem15  41839
  Copyright terms: Public domain W3C validator