MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3378
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2144, ax-11 2160, and ax-12 2180. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2113. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 rexeq 3288 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 rmoeq1 3377 . . 3 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑)))
4 reu5 3348 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
5 reu5 3348 . 2 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-eu 2564  df-cleq 2723  df-rex 3057  df-rmo 3346  df-reu 3347
This theorem is referenced by:  reueqd  3382  reueqdv  3383  lubfval  18254  glbfval  18267  uspgredg2vlem  29201  uspgredg2v  29202  isfrgr  30240  frgr1v  30251  nfrgr2v  30252  frgr3v  30255  1vwmgr  30256  3vfriswmgr  30258  isplig  30456  hdmap14lem4a  41980  hdmap14lem15  41991
  Copyright terms: Public domain W3C validator