Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version |
Description: A version of Russell's paradox ru 3710 (see also bj-ru 35060). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru0 35058 | . . 3 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) | |
2 | abeq2 2871 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥)) | |
3 | 1, 2 | mtbir 322 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
4 | 3 | nex 1804 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: bj-ru 35060 |
Copyright terms: Public domain | W3C validator |