Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru1 Structured version   Visualization version   GIF version

Theorem bj-ru1 35059
Description: A version of Russell's paradox ru 3710 (see also bj-ru 35060). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru1
StepHypRef Expression
1 bj-ru0 35058 . . 3 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
2 abeq2 2871 . . 3 (𝑦 = {𝑥 ∣ ¬ 𝑥𝑥} ↔ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥))
31, 2mtbir 322 . 2 ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
43nex 1804 1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1783  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  bj-ru  35060
  Copyright terms: Public domain W3C validator