Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru1 Structured version   Visualization version   GIF version

Theorem bj-ru1 36909
Description: A version of Russell's paradox ru 3802 not mentioning the universal class. (see also bj-ru 36910). (Contributed by BJ, 12-Oct-2019.) Remove usage of ax-10 2141, ax-11 2158, ax-12 2178 by using eqabbw 2818 following BTernaryTau's similar revision of ru 3802. (Revised by BJ, 28-Jun-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ru0 2127 . . 3 ¬ ∀𝑧(𝑧𝑦 ↔ ¬ 𝑧𝑧)
2 id 22 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
32, 2eleq12d 2838 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑥𝑧𝑧))
43notbid 318 . . . 4 (𝑥 = 𝑧 → (¬ 𝑥𝑥 ↔ ¬ 𝑧𝑧))
54eqabbw 2818 . . 3 (𝑦 = {𝑥 ∣ ¬ 𝑥𝑥} ↔ ∀𝑧(𝑧𝑦 ↔ ¬ 𝑧𝑧))
61, 5mtbir 323 . 2 ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
76nex 1798 1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535   = wceq 1537  wex 1777  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  bj-ru  36910
  Copyright terms: Public domain W3C validator