Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru1 Structured version   Visualization version   GIF version

Theorem bj-ru1 36422
Description: A version of Russell's paradox ru 3775 (see also bj-ru 36423). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-ru1
StepHypRef Expression
1 bj-ru0 36421 . . 3 ¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
2 eqabb 2869 . . 3 (𝑦 = {𝑥 ∣ ¬ 𝑥𝑥} ↔ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥))
31, 2mtbir 323 . 2 ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
43nex 1795 1 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1532   = wceq 1534  wex 1774  {cab 2705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806
This theorem is referenced by:  bj-ru  36423
  Copyright terms: Public domain W3C validator