| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version | ||
| Description: A version of Russell's paradox ru 3768 not mentioning the universal class. (see also bj-ru 36967). (Contributed by BJ, 12-Oct-2019.) Remove usage of ax-10 2142, ax-11 2158, ax-12 2178 by using eqabbw 2809 following BTernaryTau's similar revision of ru 3768. (Revised by BJ, 28-Jun-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ru0 2128 | . . 3 ⊢ ¬ ∀𝑧(𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑧) | |
| 2 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 3 | 2, 2 | eleq12d 2829 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑧)) |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑧 ∈ 𝑧)) |
| 5 | 4 | eqabbw 2809 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑧)) |
| 6 | 1, 5 | mtbir 323 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
| 7 | 6 | nex 1800 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: bj-ru 36967 |
| Copyright terms: Public domain | W3C validator |