![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version |
Description: A version of Russell's paradox ru 3775 (see also bj-ru 36423). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru0 36421 | . . 3 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) | |
2 | eqabb 2869 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥)) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
4 | 3 | nex 1795 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1532 = wceq 1534 ∃wex 1774 {cab 2705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 |
This theorem is referenced by: bj-ru 36423 |
Copyright terms: Public domain | W3C validator |