![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version |
Description: A version of Russell's paradox ru 3802 not mentioning the universal class. (see also bj-ru 36910). (Contributed by BJ, 12-Oct-2019.) Remove usage of ax-10 2141, ax-11 2158, ax-12 2178 by using eqabbw 2818 following BTernaryTau's similar revision of ru 3802. (Revised by BJ, 28-Jun-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ru0 2127 | . . 3 ⊢ ¬ ∀𝑧(𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑧) | |
2 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
3 | 2, 2 | eleq12d 2838 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑧)) |
4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑧 ∈ 𝑧)) |
5 | 4 | eqabbw 2818 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑧)) |
6 | 1, 5 | mtbir 323 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
7 | 6 | nex 1798 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: bj-ru 36910 |
Copyright terms: Public domain | W3C validator |