Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version |
Description: A version of Russell's paradox ru 3715 (see also bj-ru 35133). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru0 35131 | . . 3 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) | |
2 | abeq2 2872 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥)) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
4 | 3 | nex 1803 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: bj-ru 35133 |
Copyright terms: Public domain | W3C validator |