MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb1v Structured version   Visualization version   GIF version

Theorem sb1v 2089
Description: One direction of sb5 2267, provable from fewer axioms. Version of sb1 2477 with a disjoint variable condition using fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 20-Jan-2024.)
Assertion
Ref Expression
sb1v ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb1v
StepHypRef Expression
1 sb6 2087 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 equs4v 2002 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
31, 2sylbi 216 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1538  wex 1780  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-sb 2067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator